• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approche géomatique de la variabilité spatio-temporelle de la contamination microbienne des eaux récréatives

Nzang Essono, Francine January 2016 (has links)
L’objectif général de cette thèse est de caractériser la dynamique des transferts des bactéries fécales à l’aide d’une modélisation spatio-temporelle, à l’échelle du bassin versant (BV) dans une région agricole et à l’échelle événementielle. Ce projet vise à mieux comprendre l'influence des processus hydrologiques, les facteurs environnementaux et temporels impliqués dans l’explication des épisodes de contamination microbienne des eaux récréatives. Premièrement, un modèle bayésien hiérarchique a été développé pour quantifier et cartographier les niveaux de probabilité des eaux à être contaminées par des effluents agricoles, sur la base des données spectrales et des variables géomorphologiques. Par cette méthode, nous avons pu calculer les relations pondérées entre les concentrations d’Escherichia coli et la distribution de l’ensemble des paramètres agro-pédo-climatiques qui régissent sa propagation. Les résultats ont montré que le modèle bayésien développé peut être utilisé en mode prédictif de la contamination microbienne des eaux récréatives. Ce modèle avec un taux de succès de 71 % a mis en évidence le rôle significatif joué par la pluie qui est la cause principale du transport des polluants. Deuxièmement, le modèle bayésien a fait l’objet d'une analyse de sensibilité liée aux paramètres spatiaux, en utilisant les indices de Sobol. Cette démarche a permis (i) la quantification des incertitudes sur les variables pédologiques, d’occupation du sol et de la distance et (2) la propagation de ces incertitudes dans le modèle probabiliste c'est-à-dire le calcul de l’erreur induite dans la sortie par les incertitudes des entrées spatiales. Enfin, une analyse de sensibilité des simulations aux différentes sources d’incertitude a été effectuée pour évaluer la contribution de chaque facteur sur l’incertitude globale en prenant en compte leurs interactions. Il apparaît que sur l’ensemble des scénarios, l’incertitude de la contamination microbienne dépend directement de la variabilité des sols argileux. Les indices de premier ordre de l’analyse de Sobol ont montré que parmi les facteurs les plus susceptibles d’influer la contamination microbienne, la superficie des zones agricoles est le premier facteur important dans l'évaluation du taux de coliformes. C’est donc sur ce paramètre que l’attention devra se porter dans le contexte de prévision d'une contamination microbienne. Ensuite, la deuxième variable la plus importante est la zone urbaine avec des parts de sensibilité d’environ 30 %. Par ailleurs, les estimations des indices totaux sont meilleures que celles des indices de premier ordre, ce qui signifie que l’impact des interactions paramétriques est nettement significatif pour la modélisation de la contamination microbienne Enfin, troisièmement, nous proposons de mettre en œuvre une modélisation de la variabilité temporelle de la contamination microbiologique du bassin versant du lac Massawippi, à partir du modèle AVSWAT. Il s'agit d'une modélisation couplant les composantes temporelles et spatiales qui caractérisent la dynamique des coliformes. La synthèse des principaux résultats démontrent que les concentrations de coliformes dans différents sous-bassins versants se révèlent influencées par l’intensité de pluie. La recherche a également permis de conclure que les meilleures performances en calage sont obtenues au niveau de l'optimisation multi-objective. Les résultats de ces travaux ouvrent des perspectives encourageantes sur le plan opérationnel en fournissant une compréhension globale de la dynamique de la contamination microbienne des eaux de surface. / Abstract : The aim of this study was to predict water faecal contamination from a bayesian probabilistic model, on a watershed scale in a farming area and on a factual scale. This project aims to better understand the influence of hydrological, environmental and temporal factors involved in the explanation of microbial contamination episodes of recreational waters. First, a bayesian probabilistic model: Weight of Evidence was developed to identify and map the probability of water levels to be contaminated by agricultural effluents, on the basis of spectrals data and geomorphologic variables. By this method, we were able to calculate weighted relationships between concentrations of Escherichia coli and distribution of key agronomic, pedologic and climatic parameters that influence the spread of these microorganisms. The results showed that the Bayesian model that was developed can be used as a prediction of microbial contamination of recreational waters. This model, with a success rate of 71%, highlighted the significant role played by the rain, which is the main cause of pollution transport. Secondly, the Bayesian probabilistic model has been the subject of a sensitivity analysis related to spatial parameters, using Sobol indications. This allowed (1) quantification of uncertainties on soil variables, land use and distance and (2) the spread of these uncertainties in the probabilistic model that is to say, the calculation of induced error in the output by the uncertainties of spatial inputs. Lastly, simulation sensitivity analysis to the various sources of uncertainty was performed to assess the contribution of each factor on the overall uncertainty taking into account their interactions. It appears that of all the scenarios, the uncertainty of the microbial contamination is directly dependent on the variability of clay soils. Sobol prime indications analysis showed that among the most likely to influence the microbial factors, the area of farmland is the first important factor in assessing the coliforms. Importance must be given on this parameter in the context of preparation for microbial contamination. Then, the second most important variable is the urban area with sensitivity shares of approximately 30%. Furthermore, estimates of the total indications are better than those of the first order, which means that the impact of parametric interaction is clearly significant for the modeling of microbial contamination. Thirdly, we propose to implement a temporal variability model of microbiological contamination on the watershed of Lake Massawippi, based on the AVSWAT model. This is a model that couples the temporal and spatial components that characterize the dynamics of coliforms. The synthesis of the main results shows that concentrations of Escherichia coli in different sub-watersheds are influenced by rain intensity. Research also concluded that best performance is obtained by multi-objective optimization. The results of these studies show the prospective of operationally providing a comprehensive understanding of the dynamics of microbial contamination of surface water.
2

Analyse de structures à dimension stochastique élevée : application aux toitures bois sous sollicitation sismique / Analysis of structures with high stochastic dimension : application to wooden roofs under seismic loading

Riahi, Hassen 08 April 2013 (has links)
Le problème de la dimension stochastique élevée est récurrent dans les analyses probabilistes des structures. Il correspond à l’augmentation exponentielle du nombre d’évaluations du modèle mécanique lorsque le nombre de paramètres incertains est élevé. Afin de pallier cette difficulté, nous avons proposé dans cette thèse, une approche à deux étapes. La première consiste à déterminer la dimension stochastique efficace, en se basant sur une hiérarchisation des paramètres incertains en utilisant les méthodes de criblage. Une fois les paramètres prépondérants sur la variabilité de la réponse du modèle identifiés, ils sont modélisés par des variables aléatoires et le reste des paramètres est fixé à leurs valeurs moyennes respectives, dans le calcul stochastique proprement dit. Cette tâche fut la deuxième étape de l’approche proposée, dans laquelle la méthode de décomposition de la dimension est utilisée pour caractériser l’aléa de la réponse du modèle, par l’estimation des moments statistiques et la construction de la densité de probabilité. Cette approche permet d’économiser jusqu’à 90% du temps de calcul demandé par les méthodes de calcul stochastique classiques. Elle est ensuite utilisée dans l’évaluation de l’intégrité d’une toiture à ossature bois d’une habitation individuelle installée sur un site d’aléa sismique fort. Dans ce contexte, l’analyse du comportement de la structure est basée sur un modèle éléments finis, dans lequel les assemblages en bois sont modélisés par une loi anisotrope avec hystérésis et l’action sismique est représentée par huit accélérogrammes naturels fournis par le BRGM. Ces accélérogrammes permettent de représenter différents types de sols selon en se référant à la classification de l’Eurocode 8. La défaillance de la toiture est définie par l’atteinte de l’endommagement, enregistré dans les assemblages situés sur les éléments de contreventement et les éléments d’anti-flambement, d’un niveau critique fixé à l’aide des résultats des essais. Des analyses déterministes du modèle éléments finis ont montré que la toiture résiste à l’aléa sismique de la ville du Moule en Guadeloupe. Les analyses probabilistes ont montré que parmi les 134 variables aléatoires représentant l’aléa dans le comportement non linéaire des assemblages, 15 seulement contribuent effectivement à la variabilité de la réponse mécanique ce qui a permis de réduire la dimension stochastique dans le calcul des moments statistiques. En s’appuyant sur les estimations de la moyenne et de l’écart-type on a montré que la variabilité de l’endommagement dans les assemblages situés dans les éléments de contreventement est plus importante que celle de l’endommagement sur les assemblages situés sur les éléments d’anti-flambement. De plus, elle est plus significative pour les signaux les plus nocifs sur la structure. / The problem of the curse of dimensionality is frequently encountered in practical applications. It can be defined as the significant increase of the number of mechanical model calls with the number of uncertain parameters. To overcome this difficulty, a two-steps stochastic approach has been developed in this work. The first step of this approach consists in calculating the stochastic effective dimension by the means of Morris screening method. Once the most significant uncertain parameters on the variability of the mechanical responses are identified, they are modeled as random variables and the remaining parameters are fixed to their respective mean values. This allows us to reduce significantly the stochastic dimension of the problem in the second step of the approach where the decomposition method is used to estimate the statistical characteristics of the mechanical responses. The efficiency and the accuracy of this approach are evaluated through an academic problem dealing with the assessment of the integrity of a three-span five-story frame structure subjected to horizontal loads. We have demonstrate that we can reduce about 90% of the computation time required by the classical stochastic methods. Then, the proposed approach is used to the analysis of the integrity of timber roofs under seismic loading. The behaviour of this structure is described through a finite element model where the timber joints are modeled by anisotropic hysteresis law, and the seismic action is represented by eight real earthquake ground motion records. These accelerograms provided by the French institution involved in geosciences BRGM allow us to take into account different soil types according to the classification provided by the europeen design code dealing with seismic events Eurocode 8. The failure of timber roofs is reached when the damage levels in the timbers joints localized on the buckling and bracing members reach the critical value. It is shown, through a deterministic analysis, that the structure resists the seismic hazard representing the city of Le Moule in Guadeloupe. The stochastic analysis has shown that, among the 134 random variables representing the uncertainty in the nonlinear behaviour of the timber joints, only 15 have a significant effect on the variability of the structural response, which allow us to reduce the stochastic dimension in the computation of the statistical moments. According to the estimates of the mean and the standard deviation, we have shown that the variability of bracing members damage is greater than the variability of buckling members damage. Moreover, the variability of the bracing members damage is more significant for the earthquake ground motion records having the lowest collapse PGA.

Page generated in 0.098 seconds