Spelling suggestions: "subject:"cocial signalling"" "subject:"bsocial signalling""
1 |
Predation risk and the evolution of odours in island birdsThierry, Aude January 2014 (has links)
It is only recently that studies have explored the use of olfaction in birds. Birds are now known to use odour cues for navigation, and locating food. Odours produced by the birds themselves can also function in nest recognition and even mate choice. The odours of most birds stem from the preen wax produced by the uropygial or preen gland. The wax is comprised of a complex mixture of esters and volatiles, and is known to vary in some species with age, sex, season, or environmental conditions. Its function has been associated with feather maintenance, but it may also play a role in sexual selection and chemical communication. In this thesis, I used the preen gland and its preen wax to perform comparative studies on the evolution of odours between island birds and their continental relatives. I used the birds of the Oceania region as a model system, where most passerines originated from continental Australia but have colonised numerous surrounding islands such as New Zealand and New Caledonia. As islands generally lack mammalian predators, and have less parasites and less interspecific competition than continents, these differences in environmental conditions likely shaped functional differences in the preen gland and its products. I measured the size of the preen gland and collected preen wax from a variety of forest passerines in Australia, New Zealand and New Caledonia. I found that island birds have larger preen glands and therefore likely produce more preen wax than their continental relatives. I also found that the preen wax composition differed among species, with a shift to birds on islands producing disproportionately lighter and more volatile compounds. I suggest that selection favoured the gain of more volatile molecules in island birds as they were released from the constraint to camouflage their odours that is imposed by mammalian predators on continental areas. It is possible that this also allowed greater communication through olfactory channels in island birds, and such communication is enhanced through the use of more volatile compounds. To support this hypothesis I showed that the South Island robin (Petroica australis) was able to detect and react to the odour of a conspecific (odours produced by preen wax) in the absence of any visual cues. From a conservation perspective, increased volatility of the preen waxes of island birds might place them at increased risk from introduced mammalian predators that use olfaction to locate their prey. However, in both laboratory tests using Norway rats (Rattus norvegicus), a common exotic predator, and in field trials using rodent tracking tunnels, I found only limited evidence to suggest the odour of island birds places them at greater risk, and more experiments are needed to test this hypothesis. Finally, my findings of more conspicuous odours in island birds suggest new avenues of research for their conservation, including whether island species that seem especially prone to predation have preen waxes (and thus odours) that are also especially attractive to exotic mammalian predators. Conservation programmes to protect endangered island birds may even benefit from considering whether olfactory cues can be minimised as a method of reducing predation risk.
|
2 |
Social behaviour of the Eland (Tayrotragus Oryx) on Loskop Dam Nature ReserveUnderwood, Roderick 21 February 2012 (has links)
Please read the abstract on page 3. Copyright 1975, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Underwood, R 1975, Social behaviour of the Eland (Tayrotragus Oryx) on Loskop Dam Nature Reserve, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-02212012-134828 / > E12/4/130/gm / Dissertation (MSc)--University of Pretoria, 1975. / Zoology and Entomology / unrestricted
|
3 |
Neuroendocrinology of agonostic interaction and social signalling in Artic charr (Salvelinus alpinus) : Studies on the neuroendocrine regulation of aggressive behaviour, stress responses and skin colourHöglund, Erik January 2001 (has links)
<p>This thesis shows that socially subordinate Arctic charr (<i>Salvelinus alpinus</i>) display elevated brain serotonergic (5-HT) and norepinephric activity along with a chronic activation of the hypothalamic-pituitary-interrenal (HPI) axis, including elevated plasma concentrations of á-MSH. Furthermore, subordinate fish showed an inhibition of aggressive behaviour and darker body coloration, skin darkness being positively correlated with plasma á-MSH. Fish kept on dark background, and thus being darker in body colour, were less aggressive than conspecifics interacting on white background, supporting the hypothesis that skin darkening could signal social submission. The 5-HT<sub>1A </sub>-receptor agonist 8-OH-DPAT stimulated HPI axis activity in non-stressed fish, but if administrated to stressed fish it inhibited HPI axis activity, suggesting that 5-HT<sub>1A</sub> receptors may act as both post- and pre-synaptic receptors. 8-OH-DPAT also induced skin darkening in both non-stressed and stressed fish. Stimulation of brain dopaminergic activity by L-dopa treatment counteracted the stress-induced inhibition of aggressive behaviour, and stress related effects on brain 5-HT activity and plasma levels of cortisol. In conclusion, social subordination in Arctic charr results in skin darkening and an inhibition of aggressive behaviour. Stress-induced effects, that could be mediated by elevated brain 5-HT activity, and serve as a way of signalling social position and coping with stress.</p>
|
4 |
Neuroendocrinology of agonostic interaction and social signalling in Artic charr (Salvelinus alpinus) : Studies on the neuroendocrine regulation of aggressive behaviour, stress responses and skin colourHöglund, Erik January 2001 (has links)
This thesis shows that socially subordinate Arctic charr (Salvelinus alpinus) display elevated brain serotonergic (5-HT) and norepinephric activity along with a chronic activation of the hypothalamic-pituitary-interrenal (HPI) axis, including elevated plasma concentrations of á-MSH. Furthermore, subordinate fish showed an inhibition of aggressive behaviour and darker body coloration, skin darkness being positively correlated with plasma á-MSH. Fish kept on dark background, and thus being darker in body colour, were less aggressive than conspecifics interacting on white background, supporting the hypothesis that skin darkening could signal social submission. The 5-HT1A -receptor agonist 8-OH-DPAT stimulated HPI axis activity in non-stressed fish, but if administrated to stressed fish it inhibited HPI axis activity, suggesting that 5-HT1A receptors may act as both post- and pre-synaptic receptors. 8-OH-DPAT also induced skin darkening in both non-stressed and stressed fish. Stimulation of brain dopaminergic activity by L-dopa treatment counteracted the stress-induced inhibition of aggressive behaviour, and stress related effects on brain 5-HT activity and plasma levels of cortisol. In conclusion, social subordination in Arctic charr results in skin darkening and an inhibition of aggressive behaviour. Stress-induced effects, that could be mediated by elevated brain 5-HT activity, and serve as a way of signalling social position and coping with stress.
|
Page generated in 0.086 seconds