Spelling suggestions: "subject:"cocial welfare maximization"" "subject:"bsocial welfare maximization""
1 |
Stochastic approach for active and reactive power management in distribution networksZubo, Rana H.A., Mokryani, Geev, Rajamani, Haile S., Abd-Alhameed, Raed, Hu, Yim Fun 02 1900 (has links)
Yes / In this paper, a stochastic method is proposed to assess the amount of active and reactive power that can be injected/absorbed to/from grid within a distribution market environment. Also, the impact of wind power penetration on the reactive and active distribution-locational marginal prices is investigated. Market-based active and reactive optimal power flow is used to maximize the social welfare considering uncertainties related to wind speed and load demand. The uncertainties are modeled by Scenario-based approach. The proposed model is examined with 16-bus UK generic distribution system. / Supported by the Higher Education Ministry of Iraqi government.
|
2 |
Optimal operation of distribution networks with high penetration of wind and solar power within a joint active and reactive distribution market environmentZubo, Rana H.A., Mokryani, Geev, Abd-Alhameed, Raed 03 April 2018 (has links)
Yes / In this paper, a stochastic approach for the operation of active distribution networks within a joint active and
reactive distribution market environment is proposed. The method maximizes the social welfare using market based
active and reactive optimal power flow (OPF) subject to network constraints with integration of demand response (DR).
Scenario-Tree technique is employed to model the uncertainties associated with solar irradiance, wind speed and load
demands.
It further investigates the impact of solar and wind power penetration on the active and reactive distribution locational
prices (D-LMPs) within the distribution market environment. A mixed-integer linear programming (MILP) is used to
recast the proposed model, which is solvable using efficient off-the shelf branch-and cut solvers. The 16-bus UK generic
distribution system is demonstrated in this work to evaluate the effectiveness of the proposed method.
Results show that DR integration leads to increase in the social welfare and total dispatched active and reactive power
and consequently decrease in active and reactive D-LMPs. / Ministry of Higher Education and Scientific Research of Iraq
|
3 |
Active distribution network operation: A market-based approachZubo, Rana H.A., Mokryani, Geev 11 May 2021 (has links)
Yes / This article proposes a novel technique for operation of distribution networks with considering active network management (ANM) schemes and demand response (DR) within a joint active and reactive distribution market environment. The objective of the proposed model is to maximize social welfare using market-based joint active and reactive optimal power flow. First, the intermittent behavior of renewable sources (solar irradiance, wind speed) and load demands is modeled through scenario-tree technique. Then, a network frame is recast using mixed-integer linear programming, which is solvable using efficient off-the-shelf branch-and cut solvers. Additionaly, this article explores the impact of wind and solar power penetration on the active and reactive distribution locational prices within the distribution market environment with integration of ANM schemes and DR. A realistic case study (16-bus UK generic medium voltage distribution system) is used to demonstrate the effectiveness of the proposed method. / This work was supported in part by the Ministry of Higher Education Scientific Research in Iraq and in part by British Academy under Grant GCRFNGR3\1541.
|
4 |
Distribution Network Operation with High Penetration of Renewable Energy SourcesZubo, Rana H.A. January 2019 (has links)
Distributed generators (DGs) are proposed as a possible solution to supply
economic and reliable electricity to customers. It is adapted to overcome the
challenges that are characterized by centralized generation such as
transmission and distribution losses, high cost of fossil fuels and environmental
damage. This work presents the basic principles of integrating renewable DGs
in low voltage distribution networks and particularly focuses on the operation
of DG installations and their impacts on active and reactive power.
In this thesis, a novel technique that applies the stochastic approach for the
operation of distribution networks with considering active network
management (ANM) schemes and demand response (DR) within a joint active
and reactive distribution market environment is proposed. The projected model
is maximized based on social welfare (SW) using market-based joint active
and reactive optimal power flow (OPF). The intermittent behaviour of
renewable sources (such as solar irradiance and wind speed) and the load
demands are modelled through Scenario-Tree technique. The distributed
network frame is recast using mixed-integer linear programming (MILP) that is
solved by using the GAMS software and then the obtained results are being
analysed and discussed. In addition, the impact of wind and solar power
penetration on the active and reactive distribution locational prices (D-LMPs)
within the distribution market environment is explored in terms of the
maximization of SW considering the uncertainty related to solar irradiance,
wind speed and load demands. Finally, a realistic case study (16-bus UK
generic medium voltage distribution system) is used to demonstrate the
effectiveness of the proposed method. Results show that ANM schemes and
DR integration lead to an increase in the social welfare and total dispatched
active and reactive power and consequently decrease in active and reactive
D-LMPs. / Ministry of Higher Education and Scientific Research - Iraq / The selected author's publications, the published versions of which were attached at the end of the thesis, have been removed due to copyright.
|
Page generated in 0.5187 seconds