• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 33
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 131
  • 131
  • 57
  • 52
  • 32
  • 26
  • 23
  • 23
  • 17
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reducing salt in bread: a quasi-experimental feasibility study in a bakery in Lima, Peru

Saavedra Garcia, Lorena, Sosa Zevallos, Vanessa, Diez Canseco, Francisco 22 May 2015 (has links)
Objectives: To explore salt content in bread and to evaluate the feasibility of reducing salt contained in ‘pan francés’ bread. Design: The study had two phases. Phase 1, an exploratory phase, involved the estimation of salt contained in bread as well as a triangle taste test to establish the amount of salt to be reduced in ‘pan francés’ bread without detection by consumers. In Phase 2, a quasi-experimental, pre–post intervention study assessed the effects of the introduction of low-salt bread on bakery sales. Setting: A municipal bakery in Miraflores, Lima, Peru. Subjects: Sixty-five clients of the bakery in Phase 1 of the study; sales to usual costumers in Phase 2. Results: On average, there was 1·25 g of salt per 100 g of bread. Sixty-five consumers were enrolled in the triangle taste test: fifty-four (83·1 %) females, mean age 58·9 (SD 13·7) years. Based on taste, bread samples prepared with salt reductions of 10 % (P = 0·82) and 20 % (P =0·37) were not discernible from regular bread. The introduction of bread with 20 % of salt reduction, which contained 1 g of salt per 100 g of bread, did not change sales of ‘pan francés’ (P=0·70) or other types of bread (P =0·36). Results were consistent when using different statistical techniques. Conclusions: The introduction of bread with a 20 % reduction in salt is feasible without affecting taste or bakery sales. Results suggest that these interventions are easily implementable, with the potential to contribute to larger sodium reduction strategies impacting the population’s cardiovascular health.
2

Evolutionary and Physiological Adaptation of Pseudomonas aeruginosa to Elevated Concentrations of Sodium Chloride

Taha, Mariam 23 November 2011 (has links)
I have investigated the evolutionary response of Pseudomonas aeruginosa to salt (NaCl) stress, and the physiological mechanisms responsible for this adaptation. Populations of P. aeruginosa founded from the same ancestral genotype were selected at three different concentrations of NaCl, low, moderate and high for about 660 generations with four independent replicates for each concentration. Adaptation was measured as the fitness of the evolved populations relative to the ancestor assessed in direct, head-to-head competition experiments conducted in the same environment in which they were selected (direct response) as well as in all alternative environments (correlated response). Results suggest that selection in each salt environment led to adaptation to that environment and a modest degree of specialization that evolved because correlated responses to selection were smaller than direct responses. In order to identify the physiological mechanisms contributing to the populations' adaptation in high NaCl concentration, I chose a sample of evolved lines that showed the strongest evidence for specialization to salt and competed them against the common ancestor in KCl and sucrose. Results suggested that increased Na+ /H+ antiporter activity is probably the primary mechanism behind adaptation to high NaCl concentration, however alternative mechanisms cannot be excluded. Tolerance curves, which measure the performance of a genotype across a gradient of salt concentrations, suggested no change in the high salt group’s ability to tolerate extreme concentrations of NaCl. We conclude that high salt evolved population showed improvements to its ionic/osmotic stress resistance strategies mainly to Na+ efflux strategies but with no changes to salt niche.
3

Evolutionary and Physiological Adaptation of Pseudomonas aeruginosa to Elevated Concentrations of Sodium Chloride

Taha, Mariam 23 November 2011 (has links)
I have investigated the evolutionary response of Pseudomonas aeruginosa to salt (NaCl) stress, and the physiological mechanisms responsible for this adaptation. Populations of P. aeruginosa founded from the same ancestral genotype were selected at three different concentrations of NaCl, low, moderate and high for about 660 generations with four independent replicates for each concentration. Adaptation was measured as the fitness of the evolved populations relative to the ancestor assessed in direct, head-to-head competition experiments conducted in the same environment in which they were selected (direct response) as well as in all alternative environments (correlated response). Results suggest that selection in each salt environment led to adaptation to that environment and a modest degree of specialization that evolved because correlated responses to selection were smaller than direct responses. In order to identify the physiological mechanisms contributing to the populations' adaptation in high NaCl concentration, I chose a sample of evolved lines that showed the strongest evidence for specialization to salt and competed them against the common ancestor in KCl and sucrose. Results suggested that increased Na+ /H+ antiporter activity is probably the primary mechanism behind adaptation to high NaCl concentration, however alternative mechanisms cannot be excluded. Tolerance curves, which measure the performance of a genotype across a gradient of salt concentrations, suggested no change in the high salt group’s ability to tolerate extreme concentrations of NaCl. We conclude that high salt evolved population showed improvements to its ionic/osmotic stress resistance strategies mainly to Na+ efflux strategies but with no changes to salt niche.
4

Evolutionary and Physiological Adaptation of Pseudomonas aeruginosa to Elevated Concentrations of Sodium Chloride

Taha, Mariam 23 November 2011 (has links)
I have investigated the evolutionary response of Pseudomonas aeruginosa to salt (NaCl) stress, and the physiological mechanisms responsible for this adaptation. Populations of P. aeruginosa founded from the same ancestral genotype were selected at three different concentrations of NaCl, low, moderate and high for about 660 generations with four independent replicates for each concentration. Adaptation was measured as the fitness of the evolved populations relative to the ancestor assessed in direct, head-to-head competition experiments conducted in the same environment in which they were selected (direct response) as well as in all alternative environments (correlated response). Results suggest that selection in each salt environment led to adaptation to that environment and a modest degree of specialization that evolved because correlated responses to selection were smaller than direct responses. In order to identify the physiological mechanisms contributing to the populations' adaptation in high NaCl concentration, I chose a sample of evolved lines that showed the strongest evidence for specialization to salt and competed them against the common ancestor in KCl and sucrose. Results suggested that increased Na+ /H+ antiporter activity is probably the primary mechanism behind adaptation to high NaCl concentration, however alternative mechanisms cannot be excluded. Tolerance curves, which measure the performance of a genotype across a gradient of salt concentrations, suggested no change in the high salt group’s ability to tolerate extreme concentrations of NaCl. We conclude that high salt evolved population showed improvements to its ionic/osmotic stress resistance strategies mainly to Na+ efflux strategies but with no changes to salt niche.
5

Evolutionary and Physiological Adaptation of Pseudomonas aeruginosa to Elevated Concentrations of Sodium Chloride

Taha, Mariam January 2011 (has links)
I have investigated the evolutionary response of Pseudomonas aeruginosa to salt (NaCl) stress, and the physiological mechanisms responsible for this adaptation. Populations of P. aeruginosa founded from the same ancestral genotype were selected at three different concentrations of NaCl, low, moderate and high for about 660 generations with four independent replicates for each concentration. Adaptation was measured as the fitness of the evolved populations relative to the ancestor assessed in direct, head-to-head competition experiments conducted in the same environment in which they were selected (direct response) as well as in all alternative environments (correlated response). Results suggest that selection in each salt environment led to adaptation to that environment and a modest degree of specialization that evolved because correlated responses to selection were smaller than direct responses. In order to identify the physiological mechanisms contributing to the populations' adaptation in high NaCl concentration, I chose a sample of evolved lines that showed the strongest evidence for specialization to salt and competed them against the common ancestor in KCl and sucrose. Results suggested that increased Na+ /H+ antiporter activity is probably the primary mechanism behind adaptation to high NaCl concentration, however alternative mechanisms cannot be excluded. Tolerance curves, which measure the performance of a genotype across a gradient of salt concentrations, suggested no change in the high salt group’s ability to tolerate extreme concentrations of NaCl. We conclude that high salt evolved population showed improvements to its ionic/osmotic stress resistance strategies mainly to Na+ efflux strategies but with no changes to salt niche.
6

Effects of hypertonic sodium chloride injection on body water distribution in Ducks ... Gulls ... and roosters.

Ruch, Frank Eugene January 1971 (has links)
Isotope and dye estimates were made of body fluid compartment sizes in White Leghorn roosters, Glaucous-winged gulls, and in groups of Pekin ducks which were raised on either fresh water or regimes of hypertonic NaCl solution. The gulls and both groups of ducks were observed to have plasma (T-1824 dye) and total body water (H₂³O) volumes larger than thoseof the roosters, whereas the reverse was true for Br⁸² space (extracellular fluid; ECF) measurements. Salt fed ducks showed smaller, but insignificantly different compartment sizes (% body weights) when compared to fresh water raised ducks. The effects of an intravenous injection of hypertonic NaCl on the distribution of body water were compared among birds which differed in their capacity for renal and extra-renal salt elimination. In those birds (gulls, salt water ducks, and fresh water ducks with functional salt glands) which exhibited extra-renal salt secretion, the increase in ECF was significantly greater in response to the intravenous injection of hypertonic NaCl than in those birds (roosters and non-secreting fresh water ducks) which did not utilize the salt glands. The relative amounts and concentrations of the salt load removed by renal and extra-renal routes of elimination were compared. Birds with actively secreting nasal glands voided a major equivalent of the injected NaCl as solutions hypertonic to plasma NaCl levels. Renally eliminated NaCl represented a much smaller portion of the load and was in all cases hypo- or isotonic with plasma ion levels. Isotopically labelled Na²² CI administered concomitantly with the salt load in several of the test birds revealed that a large portion of the labelled sodium chloride was removed by the nasal glands and kidneys before there was equilibration of the injected load with extravascular compartments. A preliminary report is made on the composition and possible source of an excess eye secretion observed in the rearing of saline fed Pekin ducks. The enlarged Harderian glands of these birds were implicated as the source of a fluid several fold hyperkalemic to plasma ion concentrations. The secreted fluid was observed to accumulate and encrust the feathers below the inner canthus of the eye. / Science, Faculty of / Zoology, Department of / Graduate
7

Salt Intake and All-Cause Mortality in Hemodialysis Patients / 血液透析患者における食塩摂取と全死亡

Ikenoue, Tatsuyoshi 25 November 2019 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第13289号 / 論医博第2187号 / 新制||医||1039(附属図書館) / (主査)教授 中山 健夫, 教授 柳田 素子, 教授 佐藤 俊哉 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
8

Road Salt Deicers as Contaminants in the Environment:

Battifarano, Oriana January 2020 (has links)
Thesis advisor: Rudolph Hon / Over 10 million tons of deicers are applied on impervious surfaces during winter storms in the United States every year to create safer driving and walking conditions. Road salt, or sodium chloride, is the most common deicer due to its low price and wide availability. Increasing concentrations of sodium chloride (NaCl) over the past decades have been measured in surface waters and groundwater throughout North America and it is projected to continue increasing. As there are no cost effective alternatives available to road salt, its potential role as an environmental and drinking water contaminant needs to be investigated. Field measurements from previous studies reveal the homogenization of NaCl in the subsurface through consistent elevated levels year-round. Through the integration of field and laboratory methods, this thesis aims to investigate the role of subsurface processes in the transport and pathways of deicers from the point of deposition to eventual emergence in surface waters and its potential impact on drinking water supplies. To understand the contamination pathways of NaCl that result in the observed surface water concentrations, experimental simulations were designed that indicate that gravitational/convective processes are the most important initial processes influencing deicer transport, but that other processes such as diffusion, surface tension, and dispersion/advection also play important roles. / Thesis (MS) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
9

Effect of strain cross, gender, and sodium chloride concentrations on broiler meat quality

Lopez, Keyla 06 August 2011 (has links)
Effects of gender and strain cross on carcass characteristics, meat quality and sensory acceptability were studied. Strains consisted of a commercially available strain (Strain A), and a strain genetically selected to maximize breast yield currently in the test phase (Strain B). Broilers varying in gender and strain cross had similar compositional characteristics; all treatments yielded high quality breast and thigh meat and did not differ in sensory acceptability. Effect of salt concentrations on yields, instrumental quality, and sensory acceptability of broiler breast meat was determined. Breast fillets were vacuum-tumbled with different concentrations (0, 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50%) of NaCl and 0.35% sodium tripolyphosphate (STP). Marination showed improvent in CIE L*, shear force, and cooking loss. Marinated samples were highly acceptable to the majority of consumers. Results indicate that 0.5-1.0 % NaCl could be used to effectively marinate broiler breast meat depending on product application and desired attributes.
10

Ordering in amorphous binary systems

Zeidler, Anita January 2009 (has links)
In this work the method of isotopic substitution in neutron diffraction is used to measure the partial structure factors of several binary systems. Molten sodium chloride at 820(5) °C is investigated and an improvement is made on the previously available data. The applicability of a simple model pair potential for the asymptotic decay of the pair correlation functions is discussed. The glass forming system zinc chloride is also investigated in both the molten phase at 332(5) °C and the glassy phase at 25(1) °C. The measured partial pair distribution functions show that the zinc atoms are fourfold coordinated in both the glass and the liquid and that the first sharp diffraction peak in the total structure factor is mainly due to the zinc-zinc correlations. A simple ionic model can account for several factors associated with the ultimate decay of the partial pair correlation functions.

Page generated in 0.0615 seconds