• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 49
  • 49
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication of masters for microfluidic devices using conventional printed circuit technology

Sudarsan, Arjun Penubolu 30 September 2004 (has links)
The capability to easily and inexpensively fabricate microfluidic devices with negligible dependence on specialized laboratory equipment continues to be one of the primary forces driving the widespread use of plastic-based devices. These devices are typically produced as replicas of a rigid mold or master incorporating a negative image of the desired structures. The negative image is typically constructed from either thick photoresists or etched silicon substrates using conventional photolithographic fabrication processes. While these micromachining techniques are effective in constructing masters with micron-sized features, the need to produce masters rapidly in order to design, fabricate, and test microfluidic devices, is a major challenge in microfluidic technology. In this research, we use inexpensive photosensitized copper clad circuit board substrates to produce master molds using conventional printed circuit technology. The techniques provide the benefits of parallel fabrication associated with photolithography without the need for cleanroom facilities, thereby offering a degree of speed and simplicity that allows microfluidic master molds to be constructed in approximately 30 minutes in any laboratory. These techniques are used to produce a variety of microfluidic channel networks using PDMS (polydimethylsiloxane) and melt-processable plastic materials.
2

Fabrication of masters for microfluidic devices using conventional printed circuit technology

Sudarsan, Arjun Penubolu 30 September 2004 (has links)
The capability to easily and inexpensively fabricate microfluidic devices with negligible dependence on specialized laboratory equipment continues to be one of the primary forces driving the widespread use of plastic-based devices. These devices are typically produced as replicas of a rigid mold or master incorporating a negative image of the desired structures. The negative image is typically constructed from either thick photoresists or etched silicon substrates using conventional photolithographic fabrication processes. While these micromachining techniques are effective in constructing masters with micron-sized features, the need to produce masters rapidly in order to design, fabricate, and test microfluidic devices, is a major challenge in microfluidic technology. In this research, we use inexpensive photosensitized copper clad circuit board substrates to produce master molds using conventional printed circuit technology. The techniques provide the benefits of parallel fabrication associated with photolithography without the need for cleanroom facilities, thereby offering a degree of speed and simplicity that allows microfluidic master molds to be constructed in approximately 30 minutes in any laboratory. These techniques are used to produce a variety of microfluidic channel networks using PDMS (polydimethylsiloxane) and melt-processable plastic materials.
3

Functionalization and patterning of monolayers on silicon(111) and polydicyclopentadiene

Perring, Mathew Ian 01 July 2010 (has links)
The formation of a functional surfaces combines the properties of a substrate and monolayer to produce a new hybrid that can combine aspects of each. Monolayers can be made on many surfaces, and well defined functionalized monolayers were assembled on for silicon(111) and polydicyclopentadiene (PDCPD). Acid terminated monolayers were assembled on silicon(111) and their functionalization chemistry explored. It was shown that using trifluoroacetic anhydride to generate an intermediate reactive anhydride, the surface could be functionalized with amines. It was further shown that using soft lithography these functionalized surfaces could be patterned. Mixed monolayers of methyl and olefin terminated surfaces on silicon(111) were used to develop a new soft lithographic technique with polydimethylsiloxane (PDMS). PDMS can be controllably etched using fluoride species. The surface is first activated by the attachment of the Grubbs' 1st generation catalyst. A PDMS microfluidic device is then placed on the surface. By using a cross metathesis reaction, the exposed channel can be pacified. The next step, a fluoride etchant is used to remove PDMS, exposing an unreacted surface. Polymer brushes were then grown by ring opening metathesis polymerization (ROMP) in this region. Functionalization of the emerging polymer PDCPD was conducted through two different routes. ROMP formed PDCPD has double bonds that can be functionalized. In the first process, the double bonds were reacted with bromine. This is a rapid reaction and proceeds to a significant depth in the material. Bromines can then be displaced with amines in a substitution reaction. This was demonstrated with a fluorinated amine that when examined by XPS were shown to be present only at the surface, further more we were able to pattern this surface too. Secondly, a process using epoxides was developed. The epoxidation reaction could not be quantified, but formation in the second step of an amine functionalized surfaces was observed by XPS. Further reaction of surface hydroxyls was also observed. This was also used to grow polyethylimine from the surface to sufficient thickness that it became observable by infrared spectroscopy.
4

Inkless Soft Lithography: Utilizing Immobilized Enzymes and Small Molecules to Pattern Self-Assembled Monolayers Via Catalytic Microcontact Printing

Vogen, Briana Noelle January 2010 (has links)
<p>During the past two decades, soft lithographic techniques that circumvent the limitations of photolithography have emerged as important tools for the transfer of patterns with sub-micron dimensions. Among these techniques, microcontact printing (uCP) has shown special promise. In uCP, an elastomeric stamp is first inked with surface-reactive molecules and placed in contact with an ink-reactive surface, resulting in pattern transfer in the form of self-assembled monolayers in regions of conformal contact. The resolution in uCP is ultimately limited to the diffusion of ink and the elastomechanical properties of the bulk stamping material. </p> <p>One way to improve resolution is to eliminate diffusion by using inkless methods for pattern transfer. Inkless catalytic-uCP uses a chemical reaction between a stamp-immobilized catalyst and surface bearing cognate substrate to transfer pattern in the areas of conformal contact. By using pre-assembled cognate surfaces, the approach extends the range of surfaces readily amenable to patterning while obviating diffusive resolution limits imposed by traditional uCP. </p> <p>In this thesis, we report two methods using inkless catalytic uCP: biocatalytic-uCP utilizes an immobilized enzyme as a catalyst whereas catalytic-uCP utilizes an immobilized small molecule as a catalyst, such as an acid or base. Both catalytic techniques demonstrate pattern transfer at the microscale while using unconventional, acrylate-based stamp materials. Previous results produced with catalytic-uCP have shown pattern transfer with sub-50 nm edge resolution. In this demonstration of catalytic-uCP, we use the technique to demonstrate a bi-layered patterning technique for H-terminated silicon, the foremost material in semi-conductor fabrication. This technique simultaneously protects the underlying silicon surface from degradation while a highly-reactive organic overlayer remains patternable by acidic-functionalized PU stamps. Lines bearing widths as small as 150 nm were reproduced on the reactive SAM overlayer, which would not be possible without circumvention of diffusion. Before and after patterning, no oxidation of the underlying silicon was observed, preserving desired electronic properties throughout the whole process. This bi-patterning technique could be extended to other technologically-relevant surfaces for further application in organic-based electronic devices and other related technologies.</p> / Dissertation
5

Array Waveguide Evanescent Coupler for Card-to-Backplane Optical Interconnections

Flores, Angel Steve 30 June 2009 (has links)
Recent advances in computing technology have highlighted deficiencies with electrical interconnections at the motherboard and card-to-backplane levels. The CPU speeds of computing systems are drastically increasing with on-chip local clock speeds expected to approach 6 GHz by 2010. Yet, card-to-backplane communication speeds have been unable to maintain the same pace. At speeds beyond a few gigahertz the implementation of electronic interconnects gets increasingly complex, thus, alternative optical interconnection techniques are being extensively researched to relieve the expected CPU to data bus bottleneck. Despite the advantages afforded by optical interconnects there are still demands for improved packaging, enhanced signal tapping, and reduced cost expenditures. In this dissertation, we present a novel array waveguide evanescent coupling (AWEC) technology for card-to-backplane applications. The interconnection scheme is based on waveguide directional coupling between a backplane waveguide and a flexible waveguide connected to the access card or daughter board. To gain access to the shared bus media, coupling of evanescent waves is exploited to tap optical signals from the backplane waveguide to the corresponding card waveguide. The approach results in the elimination of micro-mirror out of plane deflectors and local waveguide termination obstacles present in other reported optical interconnect schemes. Most importantly, the AWEC method can yield efficient multi-drop bus architectures, not possible through free-space, fiber, or traditional guided wave approaches, that only achieve point-to-point topologies. The AWEC concept for optical interconnection was introduced through coupled mode theory, numerical simulations and BeamPROP aided CAD models. Subsequent experimental waveguide analysis was performed and shown to reasonably agree with the simulation results. Likewise, a high-resolution, cost-effective, and rapid prototyping approach for AWEC fabrication has been formulated. Significantly, when compared to other soft lithographic methods, the novel vacuum assisted microfluidic (VAM) technique results in improved waveguide structures, polymer background residue elimination and lower propagation losses. Moreover, experimental results show that our evanescent coupling approach facilitates high-speed coupling between card and backplane waveguides at speeds of 10 Gbps per channel; currently limited only by our testing electronics. In addition, satisfactory eye diagram performance comparable to that of a conventional fiber link, was also observed for the AWEC, alluding to possible aggregate speeds of 100 Gbps. Similarly, we implemented an elementary AWEC shared bus architecture and demonstrate a microprocessor-to-memory interconnect prototype through the proposed AWEC link. Notably, we expect that the AWEC scheme will be significant for high-speed optical interconnects in advanced computing systems.
6

Integration of Micro Patterning Techniques into Volatile Functional Materials and Advanced Devices

Hong, Jung M. 2009 May 1900 (has links)
Novel micro patterning techniques have been developed for the patterning of volatile functional materials which cannot be conducted by conventional photolithography. First, in order to create micro patterns of volatile materials (such as bio-molecules and organic materials), micro-contact printing and shadow mask methods are investigated. A novel micro-contact printing technique was developed to generate micro patterns of volatile materials with variable size and density. A PDMS (Polydimethylsiloxane) stamp with 2-dimensional pyramidal tip arrays has been fabricated by anisotropic silicon etching and PDMS molding. The variable size of patterns was achieved by different external pressures on the PDMS stamp. A novel inking process was developed to enhance the uniformity and repeatability in micro-contact printing. The variable density of patterns could be obtained by alignment using x-y transitional stage and multiple stamping with a z-directional moving part. Second, for direct patterning of small molecule organic materials (e.g. pentacene), a novel shadow mask method has been developed with a simple and accurate alignment system. To make accurate dimensions of patterning windows, a silicon wafer was used for the shadow mask since a conventional semiconductor process gives a great advantage for accurate and repeatable fabrication processes. A sphere ball alignment system was developed for the accurate alignment between the shadow mask and the silicon substrate. In this alignment system, four matching pyramidal cavities were fabricated on each side of the shadow mask and silicon wafer substrate using an anisotropic silicon bulk etching. By placing four steel spheres in between the matching cavities, the self-alignment system could be demonstrated with 2-3um alignment accuracy in x-y directions. For OTFT (Organic thin film transistor) application, an organic semiconducting layer was directly deposited and patterned on the substrate using the developed shadow mask method. On the other hand, novel embedding techniques were developed for enabling conventional semiconductor processes including photolithography to be applied on the small substrate. The polymer embedding method was developed to provide an extended processing area as well as easy handling of the small substrate. As an application, post CMOS (Complementary metal-oxide-semiconductor) integration of a relatively large microstructure which might be even larger than the substrate was demonstrated on a VCO (Voltage-controlled oscillator) chip. In addition, micro patterning on the optical fiber was demonstrated by using a silicon wafer holder designed to surround and hold the optical fiber. The micro Fresnel lens could be successfully patterned and integrated on the optical fiber end.
7

HIGH SPEED CONTINUOUS THERMAL CURING MICROFABRICATION SYSTEM

DiBartolomeo, Franklin 01 January 2011 (has links)
Rapid creation of devices with microscale features is a vital step in the commercialization of a wide variety of technologies, such as microfluidics, fuel cells and self-healing materials. The current standard for creating many of these microstructured devices utilizes the inexpensive, flexible material poly-dimethylsiloxane (PDMS) to replicate microstructured molds. This process is inexpensive and fast for small batches of devices, but lacks scalability and the ability to produce large surface-area materials. The novel fabrication process presented in this paper uses a cylindrical mold with microscale surface patterns to cure liquid PDMS prepolymer into continuous microstructured films. Results show that this process can create continuous sheets of micropatterned devices at a rate of 1.9 in2/sec (~1200 mm2/sec), almost an order of magnitude faster than soft lithography, while still retaining submicron patterning accuracy.
8

Cell Engineering: Regulating Cell Behaviors Using Micropatterned Biomaterials

Kumar, Girish January 2008 (has links)
No description available.
9

Microfabricated particulate devices for drug delivery

Guan, Jingjiao 13 July 2005 (has links)
No description available.
10

Microsphere-Aided Characterization of Stimuli-Responsive Polymer Networks

Bello, Carlos A 05 November 2008 (has links)
The fabrication and characterization of surface-anchored hydrogel microstructures are described. The hydrogel structures are constructed from poly(N-isopropylacrylamide), or poly(NIPAAm), which is a well-known thermoresponsive polymer that swells and contracts with changes in temperature. When patterned on a surface, these structures can experience a variety of shape changes induced by nonuniform swelling. Depending on the aspect ratio, patterns can, for instance buckle upon swelling and form wave-like patterns. Such structural changes replicate oscillatory motion of the smooth muscle cells and can be used to transport objects in microfluidics. The work, herein, investigates methods of pattern production and introduces a new technique for characterizing local swelling in the patterns. In order to achieve the latter, fluorescent microspheres were embedded in hydrogel patterns and their positions were mapped in three-dimensions using confocal microscopy. The measurements permit, for the first time, swelling maps of the structures based on relative movements of the microspheres. This information will ultimately aid in understanding how swollen macroscopic structures are related to gradients in localized swelling.

Page generated in 0.0774 seconds