• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 4
  • 1
  • Tagged with
  • 56
  • 56
  • 26
  • 15
  • 15
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

3D and 4D lithography of untethered microrobots

Rajabasadi, Fatemeh, Schwarz, Lukas, Medina-Sánchez, Mariana, Schmidt, Oliver G. 16 July 2021 (has links)
In the last decades, additive manufacturing (AM), also called three-dimensional (3D) printing, has advanced micro/nano-fabrication technologies, especially in applications like lightweight engineering, optics, energy, and biomedicine. Among these 3D printing technologies, two-photon polymerization (TPP) offers the highest resolution (even at the nanometric scale), reproducibility and the possibility to create monolithically 3D complex structures with a variety of materials (e.g. organic and inorganic, passive and active). Such active materials change their shape upon an applied stimulus or degrade over time at certain conditions making them dynamic and reconfigurable (also called 4D printing). This is particularly interesting in the field of medical microrobotics as complex functions such as gentle interactions with biological samples, adaptability when moving in small capillaries, controlled cargo-release profiles, and protection of the encapsulated cargoes, are required. Here we review the physics, chemistry and engineering principles of TPP, with some innovations that include the use of micromolding and microfluidics, and explain how this fabrication schemes provide the microrobots with additional features and application opportunities. The possibility to create microrobots using smart materials, nano- and biomaterials, for in situ chemical reactions, biofunctionalization, or imaging is also put into perspective. We categorize the microrobots based on their motility mechanisms, function, and architecture, and finally discuss the future directions of this field of research.
32

Soft Robotic Grippers Using Gecko-Inspired Fibrillar Adhesives for Three-Dimensional Surface Grasping

Song, Sukho 01 June 2017 (has links)
Researches on biological adhesive systems in nature have changed a perspective view on adhesion that it is not only the area of surface chemistry, but also mechanics of interfacial geometry which can significantly effect on fracture strength and load distribution on the contact interface. Various synthetic fibrillar adhesives in previous works have shown enhanced interfacial bond strength with the capacity of adhesion control by exploiting mechanical deformation of the elastomeric fibrillar structures inspired by geckos. However, control of the interfacial load distribution has been focused on the size of micro-contact with single or a few of micro-/nano-fibers on planar surface, and not for a large contact area on complex three-dimensional (3D) surfaces. This thesis work aims at investigating principles of the interfacial load distribution control in multi-scale, ranging from micro-contact with single micro-fiber to a centimeter-scale contact with a membrane-backed micro-fiber array on non-planar 3D surfaces. The findings are also applied for developing a soft robotic gripper capable of grasping a wide range of complex objects in size, shape, and number, expanding the area of practical applications for bio-inspired adhesives in transfer printing, robotic manipulators, and mobile robots. This paper comprises three main works. First, we investigate the effect of tip-shapes on the interfacial load sharing of mushroom-shaped micro-fibrillar adhesives with precisely defined tipgeometries using high resolution 3D nano-fabrication technique. For a large area of non-planar contact interface, we fabricate fibrillar adhesives on a membrane (FAM) by integrating micro-fibers with a soft backing, which enables robust and controllable adhesion on 3D surfaces. Picking and releasing mechanism for the maximal controllability in adhesion are discussed. Finally, we propose a soft robotic architecture which can control the interfacial load distribution for the FAM on 3D surfaces, solving an inherit dilemma between conformability and high fracture strength with the equal load sharing on complex non-planar 3D surfaces.
33

Apport de la fabrication additive multi-matériaux pour la conception robotique / Use of multi-material additive manufacturing for the design of new robotic devices

Bruyas, Arnaud 30 November 2015 (has links)
La radiologie interventionnelle percutanée permet le diagnostic ou le traitement de tissus cancéreux grâce à l'utilisation d'aiguilles et d'un guidage par imageur. Bénéfique pour le patient, ce type de procédure clinique est en revanche complexe pour le radiologue. Afin de lui apporter une assistance et de contrôler l'aiguille de manière déportée, nous proposons dans ces travaux de réaliser des dispositifs robotisés compliants, donc monoblocs, et multi-matériaux en exploitant la fabrication additive multi-matériaux. Pour y parvenir, nous proposons plusieurs solutions pour réaliser les fonctions cinématique, d'actionnement et de perception. En particulier, nous proposons une nouvelle liaison compliante, la liaison HSC, ainsi qu'un nouvel actionneur pneumatique pour l'insertion d'aiguille. Nous démontrons finalement les apports de la fabrication additive pour la robotique médicale en combinant l'ensemble de ces solutions dans un dispositif assurant un contrôle à distance de l'aiguille. / Percutaneous interventional radiology permits the diagnosis or the treatment of cancer tissues thanks to the use of needles and imaging devices. Being minimally invasive, such procedures are beneficial for the patient, but for the radiologist, they are highly complex. In order to assist the physician and remotely control the needle, we propose in this work the design and the manufacturing of multi-material compliant devices by taking advantage of multi-material additive manufacturing. To perform the design of such device, we propose several solutions in terms of kinematics, actuation and sensing. In particular, we developed a new compliant joint, the HSC joint, as well as a new pneumatic actuator for needle insertion. In the end, we demonstrate in the thesis the contributions of multi-material additive manufacturing for medical robotics, by combining all those solutions into a single device that remotely controls both the orientation and the insertion of the needle
34

Designing Multifunctional Material Systems for Soft Robotic Components

Raymond Adam Bilodeau (8787839) 01 May 2020 (has links)
<p>By using flexible and stretchable materials in place of fixed components, soft robots can materially adapt or change to their environment, providing built-in safeties for robotic operation around humans or fragile, delicate objects. And yet, building a robot out of only soft and flexible materials can be a significant challenge depending on the tasks that the robot needs to perform, for example if the robot were to need to exert higher forces (even temporarily) or self-report its current state (as it deforms unexpectedly around external objects). Thus, the appeal of multifunctional materials for soft robots, wherein the materials used to build the body of the robot also provide actuation, sensing, or even simply electrical connections, all while maintaining the original vision of environmental adaptability or safe interactions. Multifunctional material systems are explored throughout the body of this dissertation in three ways: (1) Sensor integration into high strain actuators for state estimation and closed-loop control. (2) Simplified control of multifunctional material systems by enabling multiple functions through a single input stimulus (<i>i.e.</i>, only requiring one source of input power). (3) Presenting a solution for the open challenge of controlling both well established and newly developed thermally-responsive soft robotic materials through an on-body, high strain, uniform, Joule-heating energy source. Notably, these explorations are not isolated from each other as, for example, work towards creating a new material for thermal control also facilitated embedded sensory feedback. The work presented in this dissertation paves a way forward for multifunctional material integration, towards the end-goal of full-functioning soft robots, as well as (more broadly) design methodologies for other safety-forward or adaptability-forward technologies.</p>
35

Ionic Electroactive Polymers and Liquid Crystal Elastomers for Applications in Soft Robotics, Energy Harvesting, Sensing and Organic Electrochemical Transistors

Rajapaksha, Chathuranga Prageeth Hemantha 25 April 2022 (has links)
No description available.
36

Development of Deposition-Controlled Printhead for Printing Multifunctional Devices

Hassan, Islam January 2022 (has links)
3D printing technology, which has its origins in rapid prototyping, is increasingly used to build functional devices. Although 3D printing technology has been well developed for thermoplastic polymers and metals, it is still in the research phase for soft polymeric materials such as silicones. Silicones are an industrially vital polymer characterized by a broad spectrum of chemical and physical properties for several smart applications, including on skin printing, smart sensors, multigradient material, and soft actuators. Extrusion-based multimaterial printing is one of the 3D printing techniques that have been adapted due to its compatibility to process silicone-based materials for constructing various functional devices. However, there are several challenges such as achieving on the fly mixing at low Reynolds numbers regime, achieving fast switching while using Newtonian/non-Newtonian inks, and achieving multimaterial printing on nonplanar surfaces. The development of suitable and robust printheads that are able to tackle those challenges can expand the application of this technology to a wide range of fields. In this thesis, several deposition-controlled printhead designs have been created for 3D printing multifunctional devices using an understanding of microfluidics. The established printhead can be controlled to formulate different multigradient structures through on the fly mixing during the material printing. Moreover, the developed printhead can be adapted to print multi viscous inks with high switching rates up to 50 Hz. Through the developed system, the printhead was able to track topologies in real-time, allowing objects to be printed over complex substrates. These new capabilities were applied to fabricate functional structures in order to demonstrate the potential of the developed printhead approaches that can be used in various applications, including smart sensors, soft robotics and multigradient objects. / Thesis / Doctor of Philosophy (PhD) / 3D printing techniques, such as extrusion-based multimaterial printing, have recently been utilized to process silicones due to their versatility in different smart applications, including multigradient material and soft actuators. Although it represents significant progress, there are still several challenges, including the proper mixing during printing with a laminar flow regime, the fast switching between different inks, and the printing over complex topographies. Therefore, various printhead designs have been developed in this thesis to tackle these challenges. In particular, a mixer printhead has been designed to allow mixing during printing for building multigradient objects. Also, a scalable printhead has been developed to allow fast switching for creating pixelated structures. Finally, a simple mechanical system has achieved multimaterial printing over various nonplanar surfaces. To the best of the author's knowledge, the developed printheads can be used in many fields, such as soft robotics and smart devices.
37

Continuous Wave Peristaltic Motion in a Robot

Boxerbaum, Alexander Steele 21 May 2012 (has links)
No description available.
38

Development of an artificial muscle for a soft robotic hand prosthesis / Développement d'un muscle artificiel pour une prothèse de main robotique souple

Ramirez Arias, José Luis 09 December 2016 (has links)
Le thème central de cette thèse est la conception d’actionneurs doux à partir de matériaux intelligents et d’une prothèse de main robotique souple. Notre approche prends en compte les différents points qui peuvent influer sur le développement d’une stratégie d’actionnement ou d’un muscle artificiel : i) Les mécanismes et la fonctionnalité de la main humaine afin d’identifier les exigences fonctionnelles pour une prothèse de main robotique en matière de préhension. ii) L’analyse et l’amélioration des mécanismes de la main robotique pour intégrer un comportement souple dans la prothèse. iii) L’évaluation expérimentale de la prothèse de main robotique afin d’identifier les spécifications du système d’actionnement nécessaire au fonctionnement cinématique et dynamique du robot. iv) Le développement et la modélisation d’une stratégie d’actionnement utilisant des matériaux intelligents.Ces points sont abordés successivement dans les 4 chapitres de cette thèse1. Analyse du mouvement de la main humaine pour l’identification des exigences technologiques pour la prothèse de main robotique.2. Conception et modélisation de la prothèse de main robotique à comportement souple.3. Evaluation mécatronique de la prothèse de main.4. Conception d’un muscle artificiel basé sur des matériaux intelligents. / In the field of robotic hand prosthesis, the use of smart and soft materials is helpful in improving flexibility, usability, and adaptability of the robots, which simplify daily living activities of prosthesis users. However, regarding the smart materials for artificial muscles, technologies are considered to be far from implementation in anthropomorphic robotic hands. Therefore, the target of this thesis dissertation is to reduce the gap between smart material technologies and robotic hand prosthesis. Five central axes address the problem: i)identification of useful grasping gestures and reformulation of the robotic hand mechanism, ii) analysis of human muscle behavior to mimic human grasping capabilities, iii) modeling robot using the hybrid model DHKK-SRQ for the kinematics and the virtual works principle for dynamics, iv) definition of actuation requirements considering the synergy between prehension conditions and robot mechanism, and v) development of a smart material based actuation system.This topics are addressed in four chapters:1. Human hand movement analysis toward the hand prosthesis requirements2. Design and modeling of the soft robotic hand ProMain-I3. Mechatronic assessment of Prosthetic hand4. Development of an artificial muscle based on smart materials
39

Commande dynamique de robots déformables basée sur un modèle numérique / Model-based dynamic control of soft robots

Thieffry, Maxime 16 October 2019 (has links)
Cette thèse s’intéresse à la modélisation et à la commande de robots déformables, c’est à dire de robots dont le mouvement se fait par déformation. Nous nous intéressons à la conception de lois de contrôle en boucle fermée répondant aux besoins spécifiques du contrôle dynamique de robots déformables, sans restrictions fortes sur leur géométrie. La résolution de ce défi soulève des questions théoriques qui nous amènent au deuxième objectif de cette thèse: développer de nouvelles stratégies pour étudier les systèmes de grandes dimensions. Ce manuscrit couvre l’ensemble du développement des lois de commandes, de l’étape de modélisation à la validation expérimentale. Outre les études théoriques, différentes plateformes expérimentales sont utilisées pour valider les résultats. Des robots déformables actionnés par câble et par pression sont utilisés pour tester les algorithmes de contrôle. A travers ces différentes plateformes, nous montrons que la méthode peut gérer différents types d’actionnement, différentes géométries et propriétés mécaniques. Cela souligne l’un des intérêts de la méthode, sa généricité. D’un point de vue théorique, les systèmes dynamiques à grande dimensions ainsi que les algorithmes de réduction de modèle sont étudiés. En effet, modéliser des structures déformables implique de résoudre des équations issues de la mécanique des milieux continus, qui sont résolues à l’aide de la méthode des éléments finis (FEM). Ceci fournit un modèle précis des robots mais nécessite de discrétiser la structure en un maillage composé de milliers d’éléments, donnant lieu à des systèmes dynamiques de grandes dimensions. Cela conduit à travailler avec des modèles de grandes dimensions, qui ne conviennent pas à la conception d’algorithmes de contrôle. Une première partie est consacrée à l’étude du modèle dynamique à grande dimension et de son contrôle, sans recourir à la réduction de modèle. Nous présentons un moyen de contrôler le système à grande dimension en utilisant la connaissance d’une fonction de Lyapunov en boucle ouverte. Ensuite, nous présentons des algorithmes de réduction de modèle afin de concevoir des contrôleurs de dimension réduite et des observateurs capables de piloter ces robots déformables. Les lois de contrôle validées sont basées sur des modèles linéaires, il s’agit d’une limitation connue de ce travail car elle contraint l’espace de travail du robot. Ce manuscrit se termine par une discussion qui offre un moyen d’étendre les résultats aux modèles non linéaires. L’idée est de linéariser le modèle non linéaire à grande échelle autour de plusieurs points de fonctionnement et d’interpoler ces points pour couvrir un espace de travail plus large. / This thesis focuses on the design of closed-loop control laws for the specific needs of dynamic control of soft robots, without being too restrictive regarding the robots geometry. It covers the entire development of the controller, from the modeling step to the practical experimental validation. In addition to the theoretical studies, different experimental setups are used to illustrate the results. A cable-driven soft robot and a pressurized soft arm are used to test the control algorithms. Through these different setups, we show that the method can handle different types of actuation, different geometries and mechanical properties. This emphasizes one of the interests of the method, its genericity. From a theoretical point a view, large-scale dynamical systems along with model reduction algorithms are studied. Indeed, modeling soft structures implies solving equations coming from continuum mechanics using the Finite Element Method (FEM). This provides an accurate model of the robots but it requires to discretize the structure into a mesh composed of thousands of elements, yielding to large-scale dynamical systems. This leads to work with models of large dimensions, that are not suitable to design control algorithms. A first part is dedicated to the study of the large-scale dynamic model and its control, without using model reduction. We present a way to control the large-scale system using the knowledge of an open-loop Lyapunov function. Then, this work investigates model reduction algorithms to design low order controllers and observers to drive soft robots. The validated control laws are based on linear models. This is a known limitation of this work as it constrains the guaranteed domain of the controller. This manuscript ends with a discussion that offers a way to extend the results towards nonlinear models. The idea is to linearize the large-scale nonlinear model around several operating points and interpolate between these points to cover a wider workspace.
40

Design and Fabrication of Soft Biosensors and Actuators

Aniket Pal (8647860) 16 June 2020 (has links)
Soft materials have gained increasing prominence in science and technology over the last few decades. This shift from traditional rigid materials to soft, compliant materials have led to the emergence of a new class of devices which can interact with humans safely, as well as reduce the disparity in mechanical compliance at the interface of soft human tissue and rigid devices.<br><br>One of the largest application of soft materials has been in the field of flexible electronics, especially in wearable sensors. While wearable sensors for physical attributes such as strain, temperature, etc. have been popular, they lack applications and significance from a healthcare perspective. Point-of-care (POC) devices, on the other hand, provide exceptional healthcare value, bringing useful diagnostic tests to the bedside of the patient. POC devices, however, have been developed for only a limited number of health attributes. In this dissertation I propose and demonstrate wireless, wearable POC devices to measure and communicate the level of various analytes in and the properties of multiple biofluids: blood, urine, wound exudate, and sweat.<br><br>Along with sensors, another prominent area of soft materials application has been in actuators and robots which mimic biological systems not only in their action but also in their soft structure and actuation mechanisms. In this dissertation I develop design strategies to improve upon current soft robots by programming the storage of elastic strain energy. This strategy enables us to fabricate soft actuators capable of programmable and low energy consuming, yet high speed motion. Collectively, this dissertation demonstrates the use of soft compliant materials as the foundation for developing new sensors and actuators for human use and interaction.

Page generated in 0.057 seconds