• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An?lise de fontes de incerteza na modelagem espacial do solo / Analysis of sources of uncertainty in soil spatial modelling.

SAMUEL-ROSA, Alessandro 24 February 2016 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2016-10-21T17:28:48Z No. of bitstreams: 1 2016 - Alessandro Samuel-Rosa.pdf: 15092171 bytes, checksum: bbe06c922805d4196e0a50c4f2aee7a5 (MD5) / Made available in DSpace on 2016-10-21T17:28:48Z (GMT). No. of bitstreams: 1 2016 - Alessandro Samuel-Rosa.pdf: 15092171 bytes, checksum: bbe06c922805d4196e0a50c4f2aee7a5 (MD5) Previous issue date: 2016-02-24 / CNPq / Modern soil spatial modelling is based on statistical models to explore the empirical relation-ship among environmental conditions and soil properties. These models are a simplification of reality, and their outcome (soil map) will always be in error. What a soil map conveys is what we expect the soil to be, acknowledging that we are uncertain about it. The objective of this thesis is to evaluate important sources of uncertainty in spatial soil modelling, with emphasis on soil and covariate data. Case studies were developed using data from a catchment located in Southern Brazil. The soil spatial distribution in the study area is highly variable, being deter-mined by the geology and geomorphology (coarse spatial scales), and by agricultural practices (fine spatial scales). Four topsoil properties were explored: clay content, organic carbon con-tent, effective cation exchange capacity and bulk density. Five covariates, each with two levels of spatial detail, were used: area-class soil maps, digital elevation models, geologic maps, land use maps, and satellite images. These soil and covariate data constitute the Santa Maria dataset. Two packages for R were created in support to the case studies, the first (pedometrics) con-taining various functions for spatial exploratory data analysis and model calibration, the second (spsann) designed for the optimization of spatial samples using simulated annealing. The case studies illustrated that existing covariates are suitable for calibrating soil spatial models, and that using more detailed covariates results in only a modest increase in the prediction ac-curacy that may not outweigh the extra costs. More efficient means of increasing prediction accuracy should be explored, such as obtaining more soil observations. For this end, one should use objective means for selecting observation locations to minimize the effects of psycholog-ical responses of soil modellers to conceptual and operational factors on the sampling design. This because conceptual and operational difficulties encountered in the field determine how the motivation of soil modellers shifts between learning/verifying soil-landscape relationships and maximizing the number of observations and geographic coverage. For the sole purpose of spa-tial trend estimation, it should suffice to optimize spatial samples aiming only at reproducing the marginal distribution of the covariates. For the joint purpose of optimizing sample configu-rations for spatial trend and variogram estimation, and spatial interpolation, one can formulate a sound multi-objective optimization problem using robust versions of existing sampling algo-rithms. Overall, we have learned that a single, universal recipe for reducing our uncertainty in soil spatial modelling cannot be formulated. Deciding upon efficient ways of reducing our uncertainty requires, first, that we explore the full potential of existing soil and covariate data using sound spatial modelling techniques. / A modelagem espacial do solo moderna usa modelos estat?sticos para explorar a rela??o em-p?rica entre as condi??es ambientais e as propriedades do solo. Esses modelos s?o uma sim-plifica??o da realidade, e seu resultado (mapa do solo) estar? sempre errado. O que um mapa do solo transmite ? o que esperamos que o solo seja, reconhecendo que somos incertos sobre ele. O objetivo dessa tese ? avaliar importantes fontes de incerteza na modelagem espacial do solo, com ?nfase nos dados do solo e covari?veis. Estudos de caso foram desenvolvidos usando dados de uma bacia hidrogr?fica do sul do Brasil. A distribui??o espacial do solo na ?rea de estudo ? vari?vel, sendo determinada pela geologia e geomorfologia (escalas espaciais maiores) e pr?ticas agr?colas (escalas espaciais menores). Quatro propriedades do solo foram explora-das: teor de argila, teor de carbono org?nico, capacidade de troca cati?nica efetiva e densidade. Cinco covari?veis, cada um com dois n?veis de detalhe espacial, foram utilizadas: mapas areais de classes de solo, modelos digitais de eleva??o, mapas geol?gicos, mapas de uso da terra, e imagens de sat?lite. Esses dados constituem o conjunto de dados de Santa Maria. Dois paco-tes para R foram criados, o primeiro (pedometrics) contendo v?rias fun??es para a an?lise explorat?ria espacial de dados e calibra??o de modelos, o segundo (spann) projetado para a optimiza??o de amostras espaciais usando recozimento simulado. Os estudos de caso ilustraram que as covari?veis existentes s?o apropriadas para calibrar modelos espaciais do solo, e que o uso de covari?veis mais detalhadas resulta em modesto aumento na acur?cia de predi??o que pode n?o compensar os custos adicionais. Meios mais eficientes de aumentar a acur?cia de pre-di??o devem ser explorados, como obter mais observa??es do solo. Para esse fim, deve-se usar meios objetivos para a sele??o dos locais de observa??o a fim de minimizar os efeitos das res-postas psicol?gicas dos modeladores do solo a fatores conceituais e operacionais sobre o plano de amostragem. Isso porque as dificuldades conceituais e operacionais encontradas no campo determinam mudan?as na motiva??o dos modeladores do solo entre aprendizagem/verifica??o das rela??es solo-paisagem e maximiza??o do n?mero de observa??es e cobertura geogr?fica. Para estimar a tend?ncia espacial, deve ser suficiente otimizar as amostras espaciais visando so-mente reproduzir a distribui??o marginal das covari?veis. Para otimizar configura??es amostrais para estimar a tend?ncia espacial e o variograma, e interpola??o espacial, pode-se formular um problema de otimiza??o multi-objetivo s?lido usando vers?es robustas de algoritmos de amos-tragem existentes. No geral, aprendemos que uma receita ?nica, universal para a redu??o da incerteza na modelagem espacial do solo n?o pode ser formulada. Decidir sobre formas efi-cazes de redu??o da incerteza requer, em primeiro lugar, que exploremos todo o potencial dos dados existentes usando t?cnicas de modelagem espacial s?lidas.

Page generated in 0.0918 seconds