• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbon-cycling, palaeo-atmospheres and isotope stratigraphy of marginal and non-marine Mesozoic sediments

Robinson, Stuart Alan January 2002 (has links)
No description available.
2

Simulating the accumulation of calcite in soils using the soil hydraulic model HYDRUS-1D

Meyer, Nathaniel Andrew 09 November 2012 (has links)
The distributions of calcite rich horizons within dryland soils are commonly used as paleoclimate proxies. Comprehensive conceptual and mathematical models of calcite accumulation in soils are required to accurately interpret and calibrate these proxies. A conceptual model for calcite accumulation is already well established: As water percolates through a soil, it dissolves minerals, such as calcite, transporting the soluble minerals downward. As soil water is removed by evaporation and transpiration, the water solution becomes supersaturated resulting in precipitation of calcite at depth. The impacts of dynamic plant growth and microbial respiration have not yet been simulated in numerical models for calcite accumulation but are likely important because of their influence on variables governing calcite solubility. The soil hydraulic modeling software, HYDRUS-1D, simulates water and solute transfer through a soil column, accounting for variations in all previously studied variables (temperature, water content, soil pCO₂) while additionally simulating vegetation-soil interactions. Five separate sensitivity studies were conducted to determine the importance for calcite accumulation of 1) soil texture, 2) plant growth, 3) plant phenology, 4) atmospheric CO₂ concentrations, and 5) the proximal variables that control calcite dissolution and precipitation: soil CO₂, soil water content, and soil temperature. In each modeling simulation, calcite was leached from the top several cm and redistributed deeper in the soil after 20 years. Soils with courser texture yield deeper (+20cm), more diffuse calcite horizons, as did simulations with bare soil compared to vegetated soil. The phenology of plant communities (late spring versus late summer growth) resulted in soil calcite accumulation at temperatures differing by at least 10°C. Changes in atmospheric CO₂ concentrations do not affect the soil calcite distribution. Variations in concentration of soil CO₂, rather than soil water content, have the greatest direct effect on calcite solubility. The most significant time periods of annual accumulation also corresponded with positive water fluxes resulting from high matric potential at the surface. Transpiration and evaporation moisture sinks caused solution to travel upward from higher to lower soil CO₂ concentrations, causing CO₂ de-gassing and calcite accumulation. This pathway describes a new qualitative mechanism for soil calcite formation and should be included in the conceptual model. / text
3

Trading Carbon and Water Through Vegetation Shifts

Kim, John H. January 2011 (has links)
<p>In this dissertation, I explored the effects of vegetation type on ecosystem services, focusing on services with significant potential to mitigate global environmental challenges: carbon sequestration and groundwater recharge. I analyzed >600 estimates of groundwater recharge to obtain the first global combined analysis of groundwater recharge and vegetation type. Using a regression model, I found that vegetation was the second best predictor of recharge after precipitation. Recharge rates were lowest under forests, intermediate in grasslands, and highest under croplands. The differences between vegetation types were higher in more humid climates and sandy soils but proportionately, the differences between vegetation types were higher in more arid climates and clayey soils. My extensive field estimates of recharge under paired vegetation types in central Argentina and southwestern United States provided a more direct test of the relationships between vegetation and recharge. The field data confirmed the strong influences of vegetation and its interactions with abiotic factors on recharge observed in the synthesis. The results indicate that vegetation shifts have a proportionately larger potential to affect recharge in more arid climates and clayey soils.</p><p>At the same study systems, I compared my field estimates of recharge to organic carbon stocks (in biomass, litter and soil) under the different vegetation types to evaluate tradeoffs between carbon sequestration and groundwater recharge as affected by vegetation shifts. To determine net values of vegetation shifts, I combined the changes in carbon and water with reported economic values of the ecosystem services. Based on physiological tradeoffs between photosynthesis and transpiration in plants, I hypothesized that vegetation promoting carbon storage would reduce recharge and vice versa. Changes in water and carbon services were inversely proportional, with rain-fed cultivation increasing groundwater recharge but decreasing carbon storage compared to the grasslands they replaced whereas woody encroachment did the opposite. In contrast, cultivated plots irrigated with ground water decreased both ecosystem services. Higher precipitation and clay content both exacerbated changes in carbon storage with grassland conversions, whereas higher precipitation accentuated, but higher clay content diminished, those in recharge. Regardless of the nature of vegetation shift, most of the net values of grassland conversions were negative, with the shifts representing increasing costs in the following order: woody encroachment, rain-fed cultivation and irrigated cultivation. Values of changes in carbon were greater in magnitude than those of recharge, indicating that establishment of carbon markets may drive land-use changes in grasslands over water markets.</p><p>Lastly, I examined the effects of changes in subsurface hydrology resulting from grassland conversion to croplands on soil inorganic carbon stocks in the same U.S. study system. I observed significantly lower inorganic carbon stocks under both rain-fed and irrigated croplands compared to the grasslands they replaced. The losses were visible to past 6 m depth in the soil profile and were uncharacteristically rapid for the carbon pool that is considered to be relatively inert. Based on the negative relationship between the inorganic carbon stocks and recharge rates and higher estimated exports of bicarbonates in recharge under croplands, I concluded that increased recharge with cultivation resulted in dissolution and leaching of grassland soil carbonates. Ecosystem services and their relationships to biotic and abiotic factors quantified here will further our understanding of the tradeoffs and interactions between the two services through vegetation shifts.</p> / Dissertation

Page generated in 0.0731 seconds