• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 11
  • 4
  • 3
  • 1
  • Tagged with
  • 73
  • 73
  • 37
  • 11
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

An approach to studying soil-landscape relationships in Virginia

Stolt, Mark H. 13 October 2005 (has links)
Various methods and techniques were used to examine soil-landscape relationships for residual and colluvial soils of Virginia. Soil micromorphology indicated that although some BC and C horizons in the field appeared structureless, evidence of pedogenic process was observed. These were designated as either BCt, BC, or CB horizons depending on the amount of oriented clay and the rates of change with depth of clay, DCB extractable Fe, and sand contents. Soil variability was examined for the overall study, as well as within toposequences, pedons, and individual horizons. Most of the overall variability was attributed to differences between study sites or between horizons, with minimal amounts due to landscape position. Substantial lateral variability occurred within horizons indicating a strong need for subsampling within horizons of the same pedon. Lithologic discontinuities were found to be difficult to recognize without obvious field evidence. Reconstruction analysis was used to examine soil and saprolite formation. Summit and backslope soils were found to be essentially the same in both morphology and degree of profile development. Sand weathering and clay eluviation/illuviation were the major soil forming processes occurring within these soils. Footslope soils were less developed than associated summit and backslope soils, with both depositional and pedologic processes contributing to soil formation and development. Thickness of saprolite was found to decrease. from the summit to the footslope. Thicker saprolite at the summit was apparently related to the greater stability of the summit position compared to the backslope and footslopes. A bucket auger was modified to obtain undisturbed samples of deep saprolite for reconstruction analysis. Saprolite reconstruction indicated that between 20 and 36 % of the mass of the partially weathered rock, which is the precursor to saprolite, is lost during saprolite formation. Most of these losses were either Al or Si. Initial soil formation was shown to occur at a faster rate than saprolite formation, but after substantial profile development, soil formation is reduced to a rate below that of saprolite formation, and saprolite accumulates below the solum. Reconstruction analysis was found to be a valuable tool in studying soil-landscape relationships. / Ph. D.
62

Soil genesis studies of upland soils formed in transported materials overlying the Virginia Piedmont using trend-surface analyses

Saxton, H. Thomas 10 January 2009 (has links)
Soils overlying residuum on upland divides and interfluves that formed from transported material are common in the Virginia Piedmont. They are thought to occur on the oldest landscapes in the region. A study was initiated in Appomattox County and a small portion of Buckingham County encompassing an area of 238 square miles. The origin, age and characterization of these soils is studied. Mapping units comprised of red subsoil components and mapping units with non-red subsoil components are compared. Trend-surface analysis of the elevations at which they occur and chemical and physical data from twenty-four pedons in Appomattox County are used. The mapping units contain a complex mixture of taxonomic classifications that encompass pedons with and without palic clay distributions. Wetness due to perched water tables at variable depths also affects classifications. The red subsoil mapping units tend to occupy the older landscapes. Age estimates are derived from a comparison of trend-surface elevations between the transported soils and the present-day surface. These comparisons result in age estimates of 0.8 million years to 6.25 million years BP. Therefore, the oldest geomorphic surfaces in the south central Piedmont of Virginia may be estimated as late Pliocene to Miocene age landscapes. These soil materials were deposited through a process of landscape inversion dominated by subsidence and colluviation. / Master of Science
63

Soil Formation on the Namaqualand Coastal Plain

Francis, Michele Louise 03 1900 (has links)
Thesis (PhD (Soil Science))--Univ ersity of Stellenbosch, 2008. / The (semi-)arid Namaqualand region on the west coast of South Africa is wellknown for its spring flower displays. Due to the aridity of the region, soils research has lagged behind that of the more agriculturally productive parts of South Africa. However, rehabilitation efforts after the hundred or so years of mining, coupled with the increasing ecology and biodiversity research, have prompted a recent interest in Namaqualand soils as a substrate for plant growth. The area is also notable for the abundance of heuweltjies. Much of the previous heuweltjie-work focussed on biogenic aspects such as their spacing, origin and age, but although heuweltjies are in fact a soil feature, there have been few published studies on the soil forming processes within heuweltjies. However, the depositional history of the sediments on the Namaqualand coastal plain is well constrained, which is in stark contrast to the paucity of data on their subsequent pedogenesis. Given that the regolith has been subaerially exposed in some parts for much of the Neogene, the soil formation forms an important part of the sediments’ history. The primary aim of this thesis, therefore, was to examine the soil features of the Namaqualand coastal plain to further the understanding of pedogenesis in the region. The regolith of the northern Namaqualand coastal plain, often ten or more metres deep, comprises successive late Tertiary marine packages, each deposited during sea-level regression. The surface soil horizons formed from an aeolian parent material. The relatively low CaCO3 in the aeolian sands dictated the pedogenic pathway in these deposits. The non-calcareous pathway lead to clay-rich, redder apedal horizons that show a stronger structure with depth, and generally rest directly on marine sands via a subtle discontinuity that suggests pedogenesis continues into the underlying marine facies. The calcareous pathway lead to similar clay-rich, redder apedal B horizons, but which differ in that they are calcareous, and rest on a calcrete horizon often via a stoneline of rounded pebbles. Deeper in the profile, there is generally a regular alteration of sedimentary units, with the upper shoreface facies showing reddening, and the lower shoreface sands remaining pale. This seems to be a function of the grain size, since the upper shoreface materials are coarser, and the redder parts of the lower shoreface are also associated with slightly coarser sands. In some strata the oxidation of glauconite-rich sediments resulted in an orange colour. In an area with abundant heuweltjies, a strongly-cemented calcretized nest was present about 2 m deep within a silica cemented, locally calcareous dorbank profile. Vertical termite burrows are present up to 12 m deep, and appear to have been conduits for preferential vertical flow. Soil formation and termite activity is at least as old as the Last Interglacial. E horizons may have formed in a wetter Last Interglacial paleoclimate, but they are still active in the present day. The Namaqualand coastal plain, with its extensive areas of calcrete development, is almost a textbook setting for calcrete development by inorganic processes. However, these calcretes also show microscale biogenic features. These include M rods, MA rods, and fungal filaments. Abiotic alpha-fabric seems dominant in mature calcrete horizons, and beta-fabric in calcareous nodules in a calcic B horizon above calcrete. The apparent absence of Mg-calcite and dolomite, and abundance of sepiolite in the calcretes of coastal Namaqualand suggests that these Mg-rich clay minerals are the main Mg-bearing phase. Deformation (pseudo-anticlines) in the calcrete appear to result primarily from the displacive effect of calcite crystallization. Although evidence of shrink/swell behaviour is present in the form of accommodating planes, it does not appear to be as volumetrically significant as displacive calcite. Indurated light-coloured horizons that resembled calcrete but are non- to mildly calcareous, break with a conchoidal fracture, resist slaking in both acid and alkali, turn methyl-orange purple, and show a bulk-soil sepiolite XRD peak are similar to palygorskite-cemented material (‘palycrete’) from Spain and Portugal, and so were tentatively named ‘sepiocrete’. Sepiolite and palygorskite are often reported from arid region soils but there has been no recorded cementation of soils by sepiolite. The degree of induration in some of these horizons suggest that amorphous silica could play a role in cementation, and so this thesis compares the two silica-cemented horizons encountered in Namaqualand (silcrete and dorbank (petroduric)) to these ‘sepiocrete’ horizons. Both silica and sepiolite are present in the matrix, although the degree to which silica and sepiolite dominate seems to vary even within same horizon. It seems most probable that both contribute to the structural properties of the horizon. Sepiolitic horizons do not form a diagnostic horizon in the World Reference Base, Soil Taxonomy, or the South African system. To fit the existing soil classification schemes, the terms ‘sepiolitic’ and ‘petrosepiolitic’ (in the same sense as ‘calcic’ and ‘petrocalcic’) would be appropriate. The term ‘sepiolitic’ should be used for horizons which: contain sepiolite in amounts great enough for it to be detected by XRD in the bulk soil, peds (a fractured surface and not just the cutan) cling strongly to the wetted tongue, and methyl orange turns from orange to purple-pink over most of a fragmented surface. The term can be easily be applied as a adjective to other hardpans where sepiolite is significant but not necessarily cementing, such as ‘sepiolitic’ petrocalcic/petroduric. If the horizon is in addition to the above criteria cemented to such a degree that it will slake neither in acid (so cannot be classified as petrocalcic) nor in alkali (and so cannot be classified as petroduric) then the term ‘petrosepiolitic’ would be appropriate. The ‘sepiolitic’ criteria distinguish the ‘petrosepiolitic’ horizon from a ‘silcrete’, a silica-cemented horizon which does not fit the definition of petroduric. Sepiolite is more prominent than palygorskite in the XRD traces. The <0.08 μm fraction is the only size fraction where palygorskite could be detected before acetate treatment. It is unlikely that these fibrous clay minerals are inherited from either the marine or aeolian parent materials, they appear to be pedogenic in origin. Sepiolite and palygorskite are associated with the presence of calcite in the soil profile. Trends in MgO, Al2O3 and SiO2 show that the soil clay fractions lie on a mixing line between sepiolite and mica end-members, with a contribution from smectite, and is consistent with the XRD and TEM results. There is a good correlation between Fe2O3 and TiO2, which can be attributed to the ubiquitously presence of mica. There was no TEM evidence of fibrous mineral degradation to sheet silicates, nor for the evolution of mica laterally to a fibrous mineral. SEM analyses show that much of the sepiolite/palygorskite occurs as fringed sheets, but higher magnification often revealed these sheets to be composed of fibres. These are found coating (rather than evolving from) mica/illite particles, as free-standing mats, and are common on the grain-side of cutans. Some of these textures suggest illuviation of the fibrous clay minerals, but another explanation may be that sites such as that immediately adjacent to silicate grains have the highest concentration of silica for their formation. There was no conclusive evidence for or against the presence of kerolite in the clay fraction, although it does not appear to be a dominant phase in the <2 μm fraction. The hypothesis was that the permeable upper horizons in Namaqualand soils constitute a shallow ephemeral aquifer, which can be considered the pedogenic analogue of the saline lake environments in which sepiolite typically forms. The chemical evolution of the soil solution and clay mineral genesis could therefore be considered in the same terms as the geochemical evolution of closed-basin brines. The Namaqualand coastal plain, like other maritime areas, shows a trend of decreasing pH, increasing Ca and increasing Mg with increasing evaporation. This can be explained by their seawater-influenced initial ratios, and is consistent with the ‘chemical divides’ of the Hardie-Eugster model of brine evolution. Halite remains undersaturated at all concentrations in the saturated paste extracts. At higher concentrations, gypsum reaches saturation, and sulfate is removed from solution. H4SiO4 activity remains unchanged for all levels of evaporation and pH. Calcite remains close to saturation, and is only dependent on the HCO−3 activity and pH for the range of Cl− activity encountered. Most of the soils for which there is a positive sepiolite identification show a positive sepiolite saturation index. The sepiolite saturation index is independent of Mg2+ and H4SiO4 and only increases with increasing pH. Evidence of the pH control on sepiolite saturation is that sepiolite is commonly associated with calcareous horizons. Sepiolite precipitation is therefore more likely to be triggered when a solution encounters a pH barrier than by the concentration of ions by evaporation. The effect of a pH change on the sepiolite saturation index is much greater than that of the effect on calcite. The marine-influenced high Mg coupled with the Hardie- Eugster model of brine evolution offers an explanation for sepiolite-dominance at the coast, and palygorskite-dominance inland. Coastal areas, unlike continental areas, have Mg>HCO−3 initially, which results in an increasing Mg trend with evaporation during the precipitation of sepiolite according to the Hardie-Eugster scheme. The result is that after sepiolite precipitation is initiated by a geochemical pH-barrier, Mg levels will rise causing the increasing (Mg+Si)/Al ratio to continue to favour sepiolite precipitation. This suggests that once sepiolite has begun to precipitate, the subsequent salinity with its accompanying Mg increase makes substantial palygorskite formation unlikely to follow. The hardpan horizons in heuweltjies commonly grade from a ‘sepiolitic’ petrocalcic in the centre through ‘sepiolitic’/‘petrosepiolitic’ to the petroduric horizon on the edges. Noteworthy sepiolite-related pedofeatures in the calcrete include ‘ooids’ with successive sepiolite (hydrophilic and therefore a precipitational substrate) and micrite/acicular calcite layers in the coatings; and limpid yellow nodules with pseudo-negative uniaxial interference figures. They superficially resemble the spherulites in the fresh termite frass. Their fibrous nature and low birefringence, together with the low Ca, high Mg, Si composition, and molar Mg/Si ratios consistent with sepiolite. The pedogenesis of the hardpans in the heuweltjie is proposed to be as follows: enrichment of cations such as Ca and Mg in the heuweltjie centre caused by termite foraging results in calcite and clay authigenesis in the centre of the heuweltjie, leaving the precipitation of pure silica to occur on the periphery. The decaying organic matter concentrated in the centre of the mound by the termites is sufficient to supply the components for calcite precipitation in the centre of the heuweltjie. Following calcite precipitation, the pH is suitable for sepiolite precipitation. The movement of the Mg-Si enriched water downslope, coupled with the decrease in HCO−3 and increase in Mg2+ due to sepiolite precipitation, allows for the precipitation of the ‘sepiolitic’ zone on the outer side of the calcrete, and extend beyond the calcrete in some heuweltjies. The Namaqualand coastal plain is well positioned for further work on its regolith, particularly because of the mining excavations which provide excellent exposures of well-defined layers of the regolith down to bedrock. Soil formation and termite activity is at least as old as the Last Interglacial, and so more detailed work would further the understanding of the subaerial alteration history in southern Africa, as well as providing better-constrained information on the Namaqualand soils that can be used by land-use management and biosphere studies.
64

Spatial analysis of soil depth variability and pedogenesis along toposequences in the Troodos Mountains, Cyprus

Robins, Colin R. 17 August 2004 (has links)
In unstable landscapes, modern pedological research explores the role of soils as products and indicators of geomorphologic change. Understanding the dynamics of hill slope pedogenesis is especially important in regions with limited, poor, or threatened soil resources. The island of Cyprus, situated in the eastern Mediterranean, is claimed by many authors to exhibit signs of severe soil degradation and is a prime site for comparative soil geomorphologic research. This study strove to 1) identify the controls of soil genesis and landscape stability within the Troodos Mountains of Cyprus using image and GIS analysis; 2) compare toposequence data to expected soil thickness trends from traditional models of xeric soil toposequences prevalent in current scientific literature; and 3) develop a predictive model for hillslope pedogenesis based on measured soil properties within the field area. Study soils within the Troodos are thin, weakly developed Lithic and Typic Xerorthents formed in colluvium derived from fractured, igneous bedrock. Soil thickness was measured at 368 sites in seven transects across three watersheds in the Troodos, using interpretations of field profiles and image analysis of digital soil-bedrock profiles in photographed road-cuts along forestry paths. Soil thickness was compared through GIS and statistical analysis to landscape attributes derived from a 25-m DEM and other map data. Results indicate that lithology is the only factor of several studied to have a significant relationship with the variability of soil-profile thickness in the Troodos, and that soil thickness does not vary in a predictable manner across toposequences. These results, combined with differences between measured soil data and values predicted by the landscape stability model SHALSTAB, suggest that soil genesis in the Troodos is best described only within the context of a weathering-limited geomorphological system. Short-term disruptive processes such as forest fires, land sliding, tree throw, and raindrop impact, combined with long-term processes such as tectonic uplift and stream incision, are the most likely driving forces behind the rapid erosion of hill slope sediments and the weak development of Troodos hill slope soils. These findings have important implications for DEM-based, predictive soil mapping in weathering-limited geomorphologic systems. / Graduation date: 2005
65

Soil genesis and vegetation growth in pulverized fuel ash and refuse landfills capped by decomposed granite

Ngai, Yuen-yi, Helen., 魏婉儀. January 1998 (has links)
published_or_final_version / Geography and Geology / Master / Master of Philosophy
66

Climatic and Tectonic Implications of a mid-Miocene Landscape: examination of the Tarapaca Pediplain, Atacama Desert, Chile

Lehmann, Sophie Butler 13 August 2013 (has links)
No description available.
67

Continuity and change in arable land management in the Northern Isles : evidence from anthropogenic soils

Guttmann, E. B. January 2001 (has links)
Human activity can affect the soil in ways which are traceable long after the land has been given over to other uses, and past land management practices can be reconstructed by investigation of these relict characteristics. In some regions the addition of fertilising materials to the arable soils has created artificially deepened anthropogenic topsoils which can be over 1m thick. Such relict soils are found all over the world, and are widespread in north-western Europe. This work focuses on the anthropogenic soils in the Northern Isles, which were formed from the Neolithic period up until the 20th century. Three multi-period sites were investigated using thin section micromorphology, organic/inorganic phosphate analysis, soil magnetism, particle size distribution, loss on ignition and soil pH. Current views of anthropogenic soil formation, based on pedological investigation and historical documentary sources, are that they are formed as a result of the addition of domestic animal manures and turf used as animal bedding to arable areas. This project sets out to test the hypothesis that in fact anthropogenic soils are the result of a wide range of formation processes which took place over extended periods of time. The hypothesis has been tested by analysing soils and associated middens of different dates, which have been sealed and protected by blown sand deposits. The results have shown that in the Neolithic period arable soils were created by cultivating the settlement's midden heaps as well as by adding midden material to the surrounding soils. In the Bronze Age human manure, ash and domestic waste were spread onto the fields around the settlements to create arable topsoils up to 35cm thick. In the Iron Age arable agriculture was intensified by selective use of organic manures on one of the sites investigated, but organic waste material was not used as efficiently as it was in later periods, and on both sites it was allowed to accumulate within the settlements. In the Norse period, when the intensive system used in historical times appears to have originated, organic waste may have been used more efficiently. These changes appear to reflect a greater organisation of land resources and manuring strategies and increased demand for arable production over time.
68

Organossolos: morfologia, atributos f?sicos, qu?micos e abund?ncia natural de is?topos de carbono e nitrog?nio / Histosols: Morphology, physical and chemical attributes, and carbon and nitrogen isotopic natural abundance

SOARES, Paula Fernanda Chaves 25 February 2015 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-02-21T17:24:10Z No. of bitstreams: 1 2015 - Paula Fernanda Chaves Soares.pdf: 3452589 bytes, checksum: a609eacd7f5462af0a01edb94f3837f5 (MD5) / Made available in DSpace on 2017-02-21T17:24:10Z (GMT). No. of bitstreams: 1 2015 - Paula Fernanda Chaves Soares.pdf: 3452589 bytes, checksum: a609eacd7f5462af0a01edb94f3837f5 (MD5) Previous issue date: 2015-02-25 / CAPES / According to the Brazilian Soil Classification System the Organossolos (Histosols) are characterized by horizons with high organic matter content and a given thickness. The carbon content is related to pedogenesis processes; however for the carbon addition and maintenance in the soil in such amount and thickness to meet the criteria of the classification system there are several factors working in conjunction, culminating in the soil genesis process. These soils can be formed by paludization or litter accumulation. The overall objective of the study was to characterize and classify Organossolos and to verify the influence of their genesis in the soil attributes, evaluating physical and chemical properties; in addition, the application of isotopic methods for analyzing natural abundance of carbon and nitrogen isotopes, relating the data with changes in vegetation and in soil evolution. The soils are under Atlantic Forest in the state of Rio de Janeiro. There were selected four profiles in different environments, one in the municipality of Mag? in the plains neighboring the Guanabara Bay, the second in Campos dos Goytacazes municipality, near Lagoa Feia, both in hot and humid climate and lowland plain relief. Two other soil profiles were located in Itatiaia municipality, in the highland section of the Itatiaia National Park, under cold weather and humid and mountainous vegetation environment. A series of analytical procedures were made: description and morphological characterization, analysis of chemical and physical properties, determination of carbon and nitrogen, chemical fractionation of humic substances, mineral material (MM), density of organic matter (DOM), minimum residue (MR), solubility in sodium pyrophosphate (SSP), determination of fibers and Von Post decomposition scale; plus the quantification of natural abundance of carbon isotopes (12C and13C) and nitrogen (14N and 15N), and carbon dating by the method of C. The RJ-01 profile was classified as ORGANOSSOLO Tiom?rfico S?prico t?pico, the RJ-02 as ORGANOSSOLO H?plico S?prico t?pico, the RJ-03 as ORGANOSSOLO H?plico H?mico t?pico and RJ-04 as ORGANOSSOLO F?lico S?prico cambiss?lico, equivalent to Sulfosaprists (RJ-01) Haplosaprists (RJ-02), Haplohemists (RJ-03) and Udifolists (RJ-04), in the Soil Taxonomy (USDA-NRCS). The RJ- 01 was significantly thicker and higher in carbon content in the subsurface. The RJ-02 profile was shallower, but had a higher organic matter deposition. The RJ-03 profile had the organic matter (OM) with the oldest C dating, in the range of 3351-3699 years at 40-50 cm. However, the RJ-04 profile stood out from the others because it had better soil drainage, higher degree of OM humification. Also, this profile had a variation of ?6 of 13C, indicating a change in local floristic composition with an increase of vegetation with C3 photosynthetic cycle, which is a hint of climate change. / De acordo com o Sistema Brasileiro de Classifica??o de Solo os Organossolos s?o caracterizados por horizontes com elevado teor de material org?nico e uma espessura m?nima. O teor de carbono esta ligado ao processo pedogen?tico, por?m para que ocorra a adi??o e manuten??o de carbono em quantidade e espessura de forma a atender os crit?rios do sistema de classifica??o uma s?rie de fatores atua em conjunto, culminando com o processo de g?nese do solo. Esses solos podem ser formados atrav?s de um desses processos: paludiza??o ou acumula??o de liteira. O objetivo geral do trabalho foi caracterizar e classificar Organossolos e verificar a influ?ncia da sua g?nese sobre os atributos ed?ficos, analisando as propriedades f?sicas e qu?micas; ainda a aplica??o de m?todos de an?lise da abund?ncia natural de is?topos de carbono e nitrog?nio, relacionando-as as altera??es na vegeta??o e na evolu??o do solo, em dois ambientes de Floresta Atl?ntica, no Estado do Rio de Janeiro. Para tanto foram selecionados quatro perfis em locais distintos, um em Mag? ao fundo da Ba?a de Guanabara, o segundo em Campos dos Goytacazes pr?ximo a Lagoa Feia, ambos em ambientes de clima quente e ?mido e relevo plano de v?rzea. Outros dois perfis localizam-se em Itatiaia, na parte alta do Parque Nacional de Itatiaia (PNI), em ambiente de clima frio e ?mido e vegeta??o altomontana. Realizou-se uma s?rie de procedimentos anal?ticos: descri??o e caracteriza??o morfol?gica, an?lises de atributos qu?micos e f?sicos, determina??o de carbono e nitrog?nio, fracionamento qu?mico das subst?ncias h?micas, material mineral (MM), densidade da mat?ria org?nica (DMO), res?duo m?nimo (RM), solubilidade em pirofosfato de s?dio (IP), determina??o de fibras (FE e FN) e escala de decomposi??o de Von Post, abundancia natural de is?topos do carbono (12C e 13C) e nitrog?nio (14N e 15N) e data??o da mat?ria org?nica do solo atrav?s do m?todo de C. O perfil RJ-01 foi classificado como ORGANOSSOLO Tiom?rfico S?prico t?pico, o RJ-02 como ORGANOSSOLO H?plico S?prico t?pico, o RJ-03 como ORGANOSSOLO H?plico H?mico t?pico e o RJ-04 como ORGANOSSOLO F?lico S?prico cambiss?lico. O perfil RJ-01 apresentou maior espessura e teores de carbono mais elevados em subsuperf?cie. O perfil RJ-02 foi o de menor profundidade, por?m possui maior deposi??o atual de mat?ria org?nica (MO). O perfil RJ- 03 possui a MO mais antiga, datando na faixa de 3351-3699 anos a 40-50 cm. No entanto, o perfil RJ-04 destacou-se dos demais por apresentar melhor drenagem e maior grau de humifica??o da MO. Al?m disso, esse perfil mostrou varia??o do valor de C de ?6, indicando altera??o na composi??o flor?stica local, com o aumento de vegeta??o do ciclo fotossint?tico C3, o que ? apontado como ind?cio de altera??es clim?ticas.
69

Quaternary marine terraces on Cyprus : constraints on uplift and pedogenesis, and the geoarchaeology of Palaipafos

Zomeni, Zomenia 12 June 2012 (has links)
Numerous flights of Quaternary marine terraces are present around the island of Cyprus, in the Eastern Mediterranean. These terraces are a result of the global eustatic sea-level curve and local tectonism. Marine Isotope Stage (MIS) 5 through MIS 13 terraces are identified, mapped and dated. Palaeoshoreline elevation, an excellent indicator for a past sea–level, and new numerical geochronology are used to calculate an Upper Pleistocene uplift rate for various coastal sectors. Southwestern Cyprus presents the highest uplift rates of 0.35-0.65 mm/year with other sections suggesting uplift of 0.07-0.15 mm/year. This Upper Pleistocene tectonic signal is attributed to an active offshore subduction/collision system to the southwest of Cyprus, evidenced from the seismic activity offshore and the surface expression of a blind thrust fault in the Pafos region. Soil chronosequences and geology in southwestern Cyprus are studied in order to understand the Quaternary development on this uplifting landscape. Soil profile properties are used to calculate a profile development index (PDI), a method often applied to geomorphic surfaces as a relative dating method. Well-developed red and clayey soils occur in the coastal sector, on broad and low-angle surfaces, specifically on marine terraces and alluvial fans. Higher elevations of steep slopes consisting of carbonate and ophiolite lithologies host poorly developed soils. Results show variable PDI's on uplifted terraces, obscured by transported materials, active alluvial fan buildup and hillslope erosion. Calcium carbonate build-up in soil profiles in the form of nodular and laminar accumulations are used as another relative dating method. Geochronology of marine terraces is used as an age range approximation for carbonate stages. Geomorphologic mapping focuses on the southeastern part of the Pafos thrust fault, the only point on the landscape where this otherwise blind fault is exposed on the surface. This is the location of Palaipafos, an important Ancient polity, today the site of the village of Kouklia. Geoarchaeological study suggests little landscape change over the last 4000 years in the vicinity of the urban core of Palaipafos, this being attributed to bedrock and landscape resistance of its location, a plateau at 80 m amsl. Copper deposits in the Palaipafos hinterland had provided a valuable resource at one time. Soil and water resources continue to sustain agriculture.Tectonic uplift in this part of the Pafos thrust fault is estimated to be 2.1mm/year, considered, together with Late Holocene sea-level change responsible for the shifting locations and eventual abandonment of the Palaipafos harbor in the coastal lowlands. / Graduation date: 2013
70

Late-glacial through Holocene Stratigraphy and Lake-level Record of Rangely Lake, Western Maine

Metcalfe, Elisabet Joan January 2007 (has links) (PDF)
No description available.

Page generated in 0.1156 seconds