• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 187
  • 82
  • 66
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 368
  • 368
  • 175
  • 124
  • 97
  • 95
  • 78
  • 76
  • 64
  • 49
  • 49
  • 48
  • 43
  • 42
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Effect of Soil and Foliar Applied Potassium on Pima and Upland Cotton at Two Arizona Locations

Galadima, A., Silvertooth, J. C., Unruh, B. L., Norton, E. R. 03 1900 (has links)
Due to increasing emphasis and interest being placed on cotton (Gossypium spp.) fiber quality as well as yield benefits associated with potassium (K) fertilization, two studies were conducted in 1994. These studies with those before them were aimed at assessing the agronomic necessity of K fertilization in Arizona cotton production. The locations of the trials included Maricopa Agricultural Center (Casa Grande sandy loam) and Safford Agricultural Center (Pima clay loam). At the Safford location, both Upland (G. hirsutum L., var. DPL 90) and Pima (G. barbadense L., var. S-7) cotton were planted with treatments that included both soil and foliar K applications. The trials at Maricopa Agricultural Center included four foliar K applications over the growing season on Pima (G barbadense L., var. S-7) cotton. The results of the experiments at both locations indicated no lint yield responses to K fertilization by either Upland or Pima cotton.
72

Evaluation of Soil Conditioners and Water Treatments for Cotton Production Systems

Unruh, B. L., Silvertooth, J. C., Sanchez, C. A., Norton, E. R. 03 1900 (has links)
Advanced technologies to produce synthetic polymers such as polyacrylamide (PAS, and polymaleic anhydride (PMA) have produced products which may be economically feasible alternatives to traditional treatments such as gypsum in the desert Southwest. In 1994 three field studies were initiated, two identical studies were located in the Yuma Valley and one at Paloma Ranch. At Yuma Valley the experiments included 0, 1, and 2 tons gypsum/acre, over which, various soil-applied treatments were made; including, a check, soluble PMA (Sper Sal™), and PAM (Hydro-Growth™). Upland cotton 'DPL 5461' was grown in both Yuma Valley studies. At Paloma Ranch, Upland 'DPL 5415' planted. Prior to planting, two gypsum applications were made at 0 and 2 tons/acre. Also included as treatments were various methods and rates of Sper Salt™. No differences among treatments were detected in either of these locations relative to crop yield. At Paloma Ranch there were some early-season differences in soil crusting among the various soil amendment treatments, however, these differences dissipated as the season progressed and did not result in lint yield differences.
73

Nitrogen Management Experiments for Upland and Pima Cotton, 1997

Silvertooth, J. C., Norton, E. R. 04 1900 (has links)
Two field experiments were conducted in Arizona in 1997 at two locations (Maricopa and Marana). The Maricopa experiment has been conducted for eight consecutive seasons, the Marana site was initiated in 1994. The purposes of the experiments were to validate and refine nitrogen (N) fertilization recommendations for both Upland and Pima cotton. The experiments each utilized N management tools such as pre- season soil tests for NO₃⁻-N in- season plant tissue testing (petioles) for N fertility status, and crop monitoring to ascertain crop fruiting patterns and crop N needs. At each location, treatments varied from a conservative to a more aggressive approach of N management. Results at each location revealed a strong relationship between the crop fruit retention levels and N needs for the crop. This pattern was further reflected in final yield analysis as a response to the N fertilization regimes used. The higher, more aggressive, N application regimes did not benefit yields at any location.
74

Comparison of the Two Methods for the Analysis of Petiole Nitrate Nitrogen Concentration in Irrigated Cotton

Smith, J. H., Silvertooth, J. C., Norton, E. R. 04 1900 (has links)
A study was conducted in Arizona in 1997 with the objective of analyzing the accuracy of a recently developed portable nitrate meter (Cardy meter) to effectively measure petiole nitrate - nitrogen (NO₃-N) in irrigated cotton (Gossvpium sue.). This task was accomplished by performing correlation and linear regression analyses on NO₃-N concentrations of cotton petiole sap, as measured by the Cardy meter, against the standard procedure NO₃-N analysis, as measured by an ion selective electrode (ISE). Results revealed that the NO₃-N concentrations of petiole sap were highly correlated with dried petiole NO₃-N (pearson correlation coefficient = 0.96, P < 0.0001). A regression equation with an r² = 0.92 was derived: Y = 9.96X - 1170.86, where X and Y are NO₃-N in petiole sap (ppm) and dried petioles (ppm), respectively. These results suggest that the sap analysis using the Cardy meter is a potentially valuable tool to monitor the in-season N status of irrigated cotton.
75

Mathematical Models of Potassium Release Kinetics for Sonoran Desert Soils of Arizona

Galadima, A., Silvertooth, J. C. 04 1900 (has links)
The objective of this study was to determine the potassium (K) release kinetics of clay samples from 10 agricultural representative soils of Arizona by successive extraction using Ca-saturated cation resin. A 1993 physical and chemical characterization of the soils revealed that all soils contain smectite-mica K bearing minerals. Four mathematical models (power function, Elovich, parabolic diffusion and first-order) were used to describe the nonexchangeable K release reaction involving 700-hr cumulative reaction time. Comparison of the models using the coefficient of determination (r²) and the standard error of the estimate (SE) indicated that the Elovich and the power function equations overall displayed the best fit. The first-order rate and for the most part, the parabolic diffusion equation did not describe the K release very well. The constants a and b for the Elovich and the power function equations, which represent the intercept and the release rate of the nonexchangeable K respectively, are at least in the order of magnitude as those found by others in several previous studies.
76

Evaluation of Calcium Soil Conditioners in an Irrigated Cotton Production System, 1997

Griffin, J. R., Silvertooth, J. C., Norton, E. R. 04 1900 (has links)
A single field experiment was conducted at Paloma Ranch, west of Gila Bend in Maricopa County Arizona in 1996 and 1997. NuCotn™ 33B was dry planted and watered -up on 15 April and 1 April in 1996 and 1997. Various rates and times of application of nitrogen (N) and calcium (Ca) from two sources [N-Cal™ (CO(NH₂)₂•CaC1₂) and CAN-17 (CaNO₃)] as well as a standard N source, UAN-32 [NH₄NO₃•CO(NH₂)₂] were used to evaluate the check In 1996 treatments 1, 2,and 3 each received a total of 280 lbs. N/acre, treatment 4 received a total of 210 lbs. N/acre, while treatment 5 received a total of 301 lbs. N/acre. Treatment 1 received only farm standard applications of UAN-32. Treatments 2 and 4 each received a total of 72 lbs. of Ca/acre. Treatment 5 received a total of 79 lbs. Ca/acre from N-Cal™ while treatment 3 received a total of 301 lbs. Ca/acre from CAN -17. Treatment 4 used a conservative N approach (UA guidelines). 1997 was similar to 1996 in the general nature of the experimental design, but different in its actual treatments. Treatments 2, 3, 4, and 5 each used N-Cal™ for the first two irrigation applications then UAN -32 for continued crop N needs. Treatment 4 used a conservative N approach (U A guidelines). Treatments 3 and 5 each received two foliar applications of N-Cal™ Foliar applications consisted of N-Cal™ mixed with urea for a 15-0-0-8 formula and applied on 22 July and 29 July via a high cycle applicator at a 5 gal/acre rate of N-Cal™ (carrier rate = 40 gal /acre). No significant differences were found among the various treatments in terms of plant growth, soil water content, ECₑ values, and sodium absorption ratios in 1996 or 1997. Lint yields were not significantly different in 1996 (P < 0.05) or 1997 (P < 0.05).
77

Foliar Fertilizer Evaluation on Upland Cotton, 1997

Silvertooth, J. C., Norton, E. R., Ozuna, S. E. 04 1900 (has links)
A single field experiment was conducted in 1997 at the University of Arizona Yuma Valley Agricultural Center. The purpose of the experiment was to evaluate foliar applications of Macro Sorb (L form amino acids) and KeyPlex (chelated micronutrients and alpha keto amino acids) foliar fertilization materials on Upland cotton. Treatments consisted of various rates and times of application of the foliar materials based upon manufacturer recommendations. Results from this single experiment revealed no differences among treatments with respect to in-season plant measurements, tissue N concentrations, or lint yield.
78

Evaluation of a Feedback Approach to Nitrogen and Pix Applications, 1997

Silvertooth, J. C., Norton, E. R. 04 1900 (has links)
A single field experiment was conducted in 1997 at Marana, AZ to compare a scheduled approach (based on stage of growth) versus a feedback approach (based on growth parameters) to both nitrogen (N) and mepiquat chloride (P1X) applications on Upland cotton (Gossypium hirsutum L.). PIX feedback treatments were based upon fruit retention (FR) levels and height to node ratios (HNRs) with respect to established baselines for Arizona growing conditions. Scheduled and feedback FIX applications were made for a total of 0.75 and 1.50 pt./acre, respectively, with the scheduled treatments being initiated earlier in the fruiting cycle (early and peak bloom). Feedback PIX treatments consisted of a single 0.75 pt./acre application near peak bloom (approx. 2000 heat units after planting, HUAP, 86/55 °F threshold). Scheduled applications of fertilizer N totaled 150 lbs. N/acre from two applications and feedback N treatments received a total of 100 lbs. N/acre from two applications. Treatments consisted of all combinations of scheduled or feedback applications of both N and PIX. The highest lint yields were from treatments receiving PIX applications, with significant differences (P ≥ 0.05) between a check treatment (with no FIX applications) and several other treatments that did receive PIX applications. If FIX was applied, there were no significant differences between the scheduled or feedback approach. Applications of PIX in relation to increasing HNRs (feedback approach) are demonstrated and reinforced in this study.
79

Evaluation of a Nitrogen-15 Microplot Design in a Furrow Irrigated Row Crop System

Silvertooth, J. C., Navarro, J. C., Norton, E. R., Sanchez, C. A. 04 1900 (has links)
Two field experiments were conducted in Arizona in at two locations, Maricopa in 1991 (Casa Grande sandy loam) and Marana (Pima clay loam) in 1995. The purposes of the experiments were to evaluate the dimensions of an ¹⁵N microplot design used in a furrow irrigated row crop system. The experiments each utilized ammonium sulfate fertilizer with 5 atom % ¹⁵N enrichment applied at a rate of 56 kg N/ha in simulated side-dress band application during the early bloom stage of development of Upland cotton (Gossvpium barbadense L). At each location, microplots were 4, 1.02 m rows wide and 1.00 m in length. Whole plant samples were collected at specific locations within and near the microplots. Uptake of ¹⁵N by plants was uniform within microplots but declined symmetrically in relation to microplot borders. Collection of plant materials within 25 cm of microplot borders provided uniform ¹⁵N enrichment levels for determining fertilizer N uptake and recovery. Use of microplots with the dimensions of those used in this study are sufficient for collecting plant materials from a 1 m² area; consisting of two, 50 cm segments from the interior two rows of the four row microplot. This also allows for sufficient distance from the perimeter of the microplot to account for border effects.
80

Potassium Fertilization of Upland and Pima Cotton (1991-1995, a five year project review)

Galadima, A., Silvertooth, J. C., Norton, E. R. 04 1900 (has links)
In an effort to provide information on the agronomic necessity of potassium (K) fertilization in Arizona cotton (Gossypium spp.) production, a five-year study was initiated in 1991 with a single field study located near Gila Bend. Subsequent study sites selected ranged from western (Yuma) to eastern (Safford) Arizona, which totaled 11 site years. Both Upland (G. hirsutum L.) and American Pima (G. barbadense L.) cotton were cultivated, using soil and foliar applications of K. In 1992, study sites included the Safford Ag. Center (SAC), Maricopa Ag. Center (MAC), and a Cooperator site at Coolidge. In 1993, the experiment stations sites were maintained (SAC and MAC) and Yuma Valley was added. The 1994 study sites included only the two experiment stations (SAC and MAC). In 1995, SAC and MAC were maintained, and a third location was a farmer cooperator site at Buckeye. The results from all studies (12) indicated no lint yield increases due to K fertilization at any of the locations with either Upland or Pima cotton. However, in 1995, at the Buckeye location, the result revealed a significant yield reduction due to the K foliar treatments. There were, however, no significant differences among soil as well as the soil-plus-foliar treated plots in the 1995 study at Buckeye.

Page generated in 0.1382 seconds