• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parâmetros físico-hídricos, lixiviação de nutrientes e desenvolvimento do girassol (Helianthus annuus L) em argissolo amarelo tratado com biocarvão

Lima, Idamar da Silva 29 February 2016 (has links)
The use of biochar in soil has been reported in countries like Japan and the United States, where the product already has reached commercial scale. The benefits of biochar go beyond improving the physical, chemical and biological soil properties, they involve regional and global environmental aspects, such as carbon sequestration in the soil and the efficient disposal of solid organic waste. This is because its resistant and recalcitrant organic nature. Investigation on the effects of biochar in weathered tropical soils with low water and nutrient storage capacity, as in most Brazilian soils and in the State of Sergipe, it is necessary and may stimulate new sustainable management practices. Therefore, the present study evaluated the effect of differentes rates of application of coconut husk biochar, produced through slow pyrolysis process, in the growth and development of sunflower plants and, in some soil physical and chemical properties. Soil organic carbon storage and soil solution composition were also evalauted. The experiment was conducted under greenhouse conditions at the Federal University of Sergipe, campus of St. Christopher-SE, between the months of July and October 2015. The soil used in the study was the surface layer of an Yellow Ultisol. The experimental design was a randomized complete block with 6 treatments (biochar rates of application: 0, 2.5, 5, 10, 20 and 30t ha-1) and 5 replications. Sixty-two days after plant emergence (DAE), all plants were evaluated for plant height, stem diameter at 2 cm of the soil, number of fully expanded leaves, flower diameter, and plant biomass dry weight. Soil solution was collected after specific irrigation events at 6, 13 and 20 days after plant emergency, and analyzed for pH EC, concentrations of P, K, nitrate and ammonium.Seven and 78 days after the incorporation of biochar, soil samples were collected from each experimental pot and analyzed for chemical (pH, EC, P, and exchangeable K, Na, Al, Ca, Mg concentrations, and organic C) and physical (field capacity, permanent wilting point, total water availability, soil bulk density, macro and microporosity) attributes. The physical attributes were only evaluated after 78 days. The soil carbon storage at the end of the experiment was calculated according to the bulk density and depth of the soil sampling. Adding biochar resulted in an increase in the levels of P and K at a depth of 0-20 cm. The high concentration of K at the 20-40 cm layer indicated that the element was leached from the top layer. Soil EC in the soil solution increased at both soil layers indicating a restriction on the use of large amount of biochar. The presence of biochar in the soil, regardless of the rate of application, did not influence the growth and development of sunflower, which can be seen as a positive effect because it means that this type of biochar can be applied to the soil to store carbon without causing harm to the plants. Biochar reduced the soil bulk density and increased microporosity, and as a result, improved water retention in the soil in about 64% at the highest rate of application. Furthermore, the presence of biochar reduced soil acidity and the availability of Al, but increased the electrical conductivity and the concentration of exchangeable Na, both at the beginning and at the end of the experiment. There was no influence of biochar on exchangeable concentrations of Ca and Mg, but the concentrations of P and K responded positively to the rate of application in the begining of the experiment, when no chemical fertilizers had been added to the soil. A positive response was observed for the K concentration in the end of the experiment. Although the addition of biochar improved the physical and chemistry quality of the soil, its implementation should be well attended due to excessive changes in soil pH and EC, and increase in Na concentration. / A utilização de biocarvão no solo vem sendo divulgada em países como Japão e Estados Unidos, onde o comércio do produto já atinge escala comercial. Os benefícios do uso do biocarvão vão além da melhoria na qualidade física, química e biológica do solo, por se tratar de matéria orgânica de natureza resistente e recalcitrante, alcançam também aspectos ambientais de relevada importância regional e mundial, como o sequestro de carbono no solo e a destinação eficiente dos resíduos orgânicos sólidos. O estudo dos efeitos do biocarvão em solos tropicais intemperizados, com baixa capacidade de armazenamento de água e nutrientes, como a maioria dos solos encontrados no Brasil e no Estado de Sergipe, torna-se necessário e poderá viabilizar novas práticas sustentáveis de manejo. Portanto, o presente trabalho avaliou o efeito da aplicação de biocarvão, produzido a partir de casca de coco seco em processo de pirólise lenta, nos atributos físicos e químicos do solo, no armazenamento de carbono, no desenvolvimento e produção de biomassa do girassol e na composição química da solução do solo em diferentes profundidades de coleta. O experimento foi desenvolvido em condições protegidas na Universidade Federal de Sergipe, campus de São Cristovão-SE, entre os meses de julho e outubro de 2015. O solo utilizado no estudo foi a camada superficial de um Argissolo Vermelho Amarelo. O delineamento experimental foi de blocos casualizados, com 6 tratamentos (doses de biocarvão aplicadas: 0; 2,5; 5; 10, 20 e 30t ha-1) e 5 repetições. Aos 62 dias após a emergência (DAE), todas as plantas foram avaliadas, sendo mensurados altura das plantas, com auxilio de régua graduada, diâmetro do caule a 2 cm do solo, com auxilio de paquímetro digital, número de folhas totalmente abertas, diâmetro do capitulo com auxilio de paquímetro digital e colheita da plantas para determinação da produção de biomassa, já a solução do solo foi coletada após específicos eventos de irrigação, sendo essa coletas realizadas aos 6, 13 e 20 dias após semeadura, sendo analisado nesses extratos o pH, CE, concentrações de fósforo, potássio, nitrato e amônio. Aos 7 e 78 dias após a incorporação do biocarvão, foram avaliados no solo os atributos químicos: pH, CE, P disponível e concentrações de trocáveis de K, Na, Al, Ca, Mg e porcentagem C, sendo na profundidade de 0-20 cm para as amostras coletadas 7 dias após incubação e 0-20 cm e 20-40 cm para as amostras coletadas aos 78 dias e atributos físicos: capacidade de campo, ponto de murcha permanente, disponibilidade total de água, densidade do solo, macro e microporosidade do solo, sendo que as analises físicas foram realizadas apenas aos 78 dias após incubação. O armazenamento de carbono no solo no final do experimento foi calculado de acordo com a densidade do solo e profundidade de coleta do solo. A adição do biocarvão proporcionou um aumento nos níveis de P e K na profundidade de 0-20 cm, porém contribuiu com o aumento na lixiviação de potássio visto que aumentou os níveis desse elemento na profundidade de 20- 40 cm. Aumentou a CE da solução do solo nas duas profundidades estudadas, podendo ser este um limitante a sua utilização em grandes quantidades. Nas doses utilizadas nesses estudos o biocarvão não proporcionou nenhum beneficio nem prejuízos ao desenvolvimento e produção de biomassa do girassol, fato esse que é visto positivamente, pois permite a utilização deste material no solo para outros fins sem causar danos a cultura implantada. A adição do biocarvão reduziu a densidade do solo e aumentou a microporosidade, e como consequência, melhorou a retenção de água no solo em aproximadamente 64% na maior dose aplicada. A presença do biocarvão reduziu a acidez do solo e a disponibilidade de Al, e aumentou a condutividade elétrica e a concentração de Na trocável, tanto no inicio quanto no final do experimento. Não houve influência do biocarvão nas concentrações trocáveis de Ca e Mg, mas as concentrações de P e de K responderam positivamente ao aumento das doses de biocarvão no inicio do ensaio, quando nenhum fertilizante químico tinha sido adicionado ao solo. Também observou-se resposta positiva quanto as concentrações de K no final do experimento. Embora tenha sido observado beneficio do biocarvão na qualidade física e química do solo, e na composição da solução do solo, sua aplicação deve ser bem assistida em função de mudanças excessivas na reação, na sodicidade e na salinidade do solo.

Page generated in 0.1058 seconds