• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 73
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 7
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 354
  • 354
  • 78
  • 76
  • 67
  • 59
  • 54
  • 54
  • 51
  • 50
  • 47
  • 43
  • 42
  • 40
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Nitrogen dynamics in sewage sludge and commercial fertilizer enriched soils

Van Niekerk, Corrie Maria 28 April 2005 (has links)
This study indicated that sewage sludge could be used as an alternative to commercial inorganic fertilizers. It is common practice in South Africa to use agricultural land for disposal of sewage sludge. The disposal of sludge must however be done in a responsible manner to avoid environmental pollution such as nitrate (NO3-) leaching. In South Africa strict guidelines exist regarding sludge disposal, and a maximum of 8 ton ha-1 year-1 (dry mass basis) sludge may be applied. This value was based on possible NO3- leaching, but no equivalent legislation exists for commercial fertilizer that could result in the same harmful effects. In this study the possible pollution hazard in terms of NO3- leaching from sewage sludge was investigated and compared to commercial fertilizer. An incubation trial was done to determine the mineralization rate of sludge and fertilizer. The rate at which inorganic N, NO3- and NH4+ was produced from sewage sludge was measured during this experiment. Sludge was applied at three different loads: 5, 10 and 20 ton dry ha-1. Commercial fertilizer was also applied on three different levels and each level was equivalent to 30% of the N content of the corresponding sludge treatments. It was found that in the sludge treatments the NH4+ levels immediately increased possibly due to microbial activity. The NH4+ levels reached a maximum on day 7, with a production rate of 14, 26 and 60 mg kg-1 NH4+ for the 5, 10 and 20 tondry ha-1 treatment, respectively. After day 7, the production rate decreased while the NO<sub3- production started increasing at the same rate at which the NH4+ levels decreased, as a result of nitrification. The 5, 10 and 20 tondry ha-1 did not show any increases in NO3- production initially, but production started increasing on day 7 and stabilized after 28 days. In the fertilizer treatments the NH4+ levels increased immediately after application. The levels decreased again due to nitrification. Unlike the sludge treatments, and immediate increase in NO3- production was observed. This is because of the inorganic nature of the applied fertilizer. The NO3- content increased over time, and at the same time the NH4+ content decreased. All the inorganic N from the fertilizer is immediately available, while the N in sludge must first be mineralized before the inorganic fraction becomes available. NO3- production from sludge is steady, and after day 28 the total NO3- production from sludge exceeds the total production from fertilizer. Even though more NO3- (mg kg-1) was produced from sludge, the distribution was different and could be utilized more effectively by plants. The risk of NO3- leaching from commercial fertilizer is therefore possibly more than the risk of NO3- leaching from sewage sludge applications. To correlate the above laboratory mineralization values to that of field conditions, a field trail was done. The potential leaching and the effect of plant uptake were also investigated. Two trials were done: one for winter and one for summer conditions. Each trial continued for three months, and soil samples were collected every two weeks on depths of 00-30 cm, 30-60 cm and 60-90 cm. For the winter trial, application levels of 4, 8 and 16 tondry ha-1 sludge were applied. Low mineralization rates and subsequently low NO3- and NH4+ levels were measured that could be attributed to low microbial activity. No NO3- leaching was detected. To obtain better results the application rates were adjusted to 20tondry ha-1 sludge and corresponding fertilizer treatments during the summer trial. Maize was used as a crop to measure the effect of plant uptake on NO3- leaching. No significant differences were obtained between the open blocks and the maize blocks. Significant leaching occurred under fertilizer treatments, but none under sludge treatments. Mineralization was also much slower in the field trial than in the laboratory trial, and after 90 days, there was still NH4+ production in the top horizons. A part of the organic N in sludge was lost through denitrification. These losses could reduce the available inorganic N and subsequently reduce the risk of NO3- leaching. An incubation study was done to measure the gaseous losses of N through N2O and N2. Gas samples were taken and measured on a gas chromatograph. Similar application rates that were used in the previous incubation study were applied, as well as different moisture contents. N2O production from sludge increased immediately after sludge application, after which the production rate steadily decreased until day 14. No significant differences were obtain between 50% and 100% moisture content, and very little N2O production was found from the fertilizer treatments. N kinetics were done on the data obtained from the incubation studies. These values indicate the rate at which sludge could be mineralized and the subsequent rate at which inorganic N, such as NO3- were produced. N balances were also drawn to indicate the quantity of organic N that is mineralized, as well as the change between different inorganic N fractions over time. This study compared the potential N pollution from sewage sludge and commercial fertilizer in agricultural soils. By using all the results mentioned above, a better idea on the dynamics of sewages sludge compared to commercial fertilizer could be obtained. This knowledge could assist to apply sludge as a fertilizer to achieve the maximum benefit from the N content in the sewage sludge, without detrimental environment impact such as groundwater contamination. / Dissertation (MSc)--University of Pretoria, 2006. / Plant Production and Soil Science / unrestricted
212

GC/ion trap MS method development and applications for the analysis of polybrominated diphenyl ethers in environmental and biota samples

Luo, Qian 01 January 2008 (has links)
No description available.
213

Assessment and bioremediation of solis contaminated by uncontrolled recycling of electronic-waste at Guiyu, SE China

Yu, Xiezhi 01 January 2008 (has links)
No description available.
214

Characterisation of environmental pollution by GC-MS analysis of polycyclic aromatic compounds in water and soil

Havenga, Willem Jacobus 29 May 2006 (has links)
Please read the abstract in the section 00front of this document / Thesis (PhD (Applied Science: Chemistry))--University of Pretoria, 2007. / Chemistry / unrestricted
215

Biodegradação de hexaclorociclohexano utilizando microrganismos e enzimas desenhadas computacionalmente. / Biodegradation of hexachlorocyclohexane using microorganisms and computationally designed enzymes.

Aline Ramos da Silva 29 January 2014 (has links)
Hexaclorociclohexano (HCH), pesticida organoclorado mundialmente utilizado, apresenta efeitos tóxicos à saúde humana e ao meio ambiente. Os microrganismos degradadores mais conhecidos são as Sphingomonas sp. Técnicas de biodegradação foram aplicadas em duas etapas. A primeira focou na biorremediação de solo contaminado, de Santo André SP, e foi realizada em biorreatores no Instituto de Pesquisas Tecnológicas (IPT). Experimentos nas fases sólida e semi-sólida apresentaram até 90% de degradação de HCH no solo. A segunda parte, na Universidade de Groningen (RuG), Países Baixos, focou no tratamento de soluções contaminadas usando enzimas selvagens e variantes desenhadas computacionalmente. Mutantes foram construídas, expressadas e purificadas. Ensaios de Thermofluor® mostraram que as variantes estavam enoveladas. Ensaios enzimáticos foram realizados em solução aquosa com b-HCH e dimetil sulfóxido (5%), sendo as amostras extraídas com acetato de etila e analisadas por cromatografia gasosa com detector de captura de elétrons. As variantes apresentaram atividade. / Hexachlorocyclohexane (HCH) is an organochlorine pesticide used world-wide which shows toxic effects in human health and causes environmental problems. The most known HCH-degrading microorganisms are Sphingomonas sp. Biodegradation techniques were applied in this work, divided in two parts. The first one focused on the bioremediation of a contaminated soil, from Santo Andre - SP, in bioreactors at the Institute for Technological Research (IPT). Experiments were carried in solid and slurry phases, which could achieve around 90% of HCH degradation. The second part was developed at the University of Groningen (Rug), The Netherlands. Contaminated solutions were treated with wild-type enzymes and computationally designed variants. Mutants were constructed, expressed and purified. Thermofluor® assay showed that all variants were well folded. Enzymatic assays were carried in aqueous solution with b-HCH and dimethyl sulfoxide (5%). The samples were extracted with ethyl acetate and analysed by gas chromatography using an electron capture detector. The variants were actives.
216

Factors Affecting Effectiveness and Efficiency of DNAPL Destruction Using Potassium Permanganate and Catalyzed Hydrogen Peroxide

Crimi, Michelle L., Siegrist, Robert L. 01 December 2005 (has links)
This paper describes laboratory studies conducted to evaluate the impact of varying environmental conditions (dense non-aqueous phase liquid (DNAPL) type and mass, and properties of the subsurface porous media) and design features (oxidant type and load) on the effectiveness and efficiency of in situ chemical oxidation (ISCO) for destruction of DNAPL contaminants. Porous media in 160 mL zero-headspace reactors were employed to examine the destruction of trichloroethylene and perchloroethylene by the oxidants potassium permanganate and catalyzed hydrogen peroxide. Measures of oxidation effectiveness and efficiency include (1) media demand (mg-oxidant/kg-porous media), (2) oxidant demand (mol-oxidant/mol-DNAPL), (3) reaction rate constants for oxidant and DNAPL depletion (min-1), (4) the percent (%) DNAPL destroyed, and (5) the relative treatment efficiency, i.e., the rate of oxidant depletion versus rate of DNAPL destruction. While an obvious goal of ISCO for DNAPL treatment is high effectiveness (i.e., extensive contaminant destruction), it is also important to focus on oxidation efficiency, or to what extent the oxidant is utilized for contaminant destruction instead of competing side reactions, for improved cost effectiveness and/or treatment times. Results indicate that DNAPL contaminants can be treated both effectively and efficiently under many environmental and design conditions. In some cases, DNAPL treatment was more effective and efficient than dissolved/sorbed phase treatment. In these experiments, permanganate was a more effective oxidant, however catalyzed hydrogen peroxide treated contaminants more efficiently (e.g., less oxidant required per mass contaminant treated). Results also indicate that oxidation treatment goals can be dictated by environmental conditions, and that specific treatment goals can dictate remediation design parameters (e.g., faster contaminant destruction was realized in catalyzed hydrogen peroxide systems, whereas greater contaminant destruction occurred in permanganate systems). Journal of Environmental Engineering
217

Bioavailability of trace metals in urban contaminated soils

Cook, Nicola. January 1997 (has links)
No description available.
218

Sorption/desorption of organic compounds by soil organic matter /

Yuan, Guoshu 01 January 1999 (has links) (PDF)
No description available.
219

Lead Distribution in Urban Soils: Relationship Between Lead Sources and Children's Blood Lead Levels

Morrison-Ibrahim, Deborah E. 14 June 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI)
220

The bioavailability of trace metals to soil invertebrates in urban contaminated soils /

Kennette, Debra. January 1997 (has links)
No description available.

Page generated in 0.0786 seconds