• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing the Spatial Variation of Crop Water Productivity for Variable-Rate Irrigation Management

Svedin, Jeffrey David 01 June 2018 (has links)
Irrigated agriculture is the primary consumer of limited worldwide freshwater resources. Drought, growing world populations, and environmental demands compete with irrigation for freshwater resources"”threatening sustainable global food, fuel, and fiber production. This escalating global crisis demands that agriculture produce more food using less water. Traditional irrigation management has used technology to apply uniform irrigation rates across landscapes"”ignoring natural environmental variation. This provides inherent inefficiencies of over- or under- irrigation within individual fields. Variable-rate irrigation (VRI) is modern technology that employs global positioning systems and geographic information systems to match irrigation to spatially variable crop water demands within a field. Although commercially available, VRI lacks scientifically validated decision support systems to determine spatially and temporally variable crop water demand. The purpose of this research is to explore spatial and temporal variations in crop water demand to inform growers utilizing VRI. This research consists of four seasons of winter wheat (Triticum aestivum L.) production on a commercial farm in Idaho that employs a VRI system. In Chapter 1, the spatial variation of crop water productivity (CWP, the grain produced per unit of water consumed), is characterized for two seasons (2016-2017) and we propose a unique conceptual strategy for VRI management targeted at CWP. Observed CWP ranged from 4.1-21 kg ha-1 mm-1 with distinct spatial variation that, when considered together with grain yield, were shown to be useful for VRI management. During the 2017 growing season, VRI zones conserved 25% of irrigation compared to traditional uniform irrigation management. In the second chapter the spatial variation of soil water holding capacity (SWHC) was measured at 90 sampling points throughout the field. Then, during the 2016-2017 growing seasons, the spatial and temporal variation of soil moisture were modelled to characterize crop stress and its influence on grain yield. Soil within the field showed large spatial variation of SWHC, ranging from 147-369 mm. Under uniform irrigation in 2016, the natural variation of TAW created 21 day variation in the onset of crop stress throughout the field and under VRI in 2017 the onset of crop stress spanned 56 d. Surprisingly the variations in TAW did not statistically influence yield in 2016, and in 2017 the rate of irrigation predicted yield and TAW again did not statistically predict yield. This suggests that other environmental variables should be included when delineating irrigation zones and rates for VRI.
2

The vegetation ecology of the Witteberg and Dwyka Groups south of Worcester, Western Cape Province, South Africa

Le Roux, Anso 01 1900 (has links)
The vegetation supported by the Witteberg and Dwyka Groups south of Worcester is a diverse mosaic of fynbos-, renosterveld- and succulent karoo vegetation units sustained by a winter-rainfall pattern. Elytropappus rhinocerotis (renosterbos) dominated plant communities are found on finer grained soils derived from the various mudrock-dominated formations of the Witteberg Group, a Passerina truncata (gonnabos) dominated shrubland with large Protea shrubs and / or small Protea trees where the substrate is largely influenced by the sandstone-dominated formations of the Witteberg Group, a grass dominated Capeochloa arundinacea (Olifantgras) shrubland where both mudrock-dominated and sandstone-dominated formations influence the substrate as a result of folding, a karoo Hirpicium integrifolium (Haarbossie) dominated shrubland where succulents are in abundance on the Dwyka tillite, and a distinct Thamnochortus bachmannii restio-dominated sandveld in areas where deep aeolian sand had accumulated. The differences in vegetation communities are mainly based on geology with consequent soil characters and degree of rockiness, as well as topography, moisture availability and the water holding capacity of the soil. Although slope, aspect and elevation can sometimes be associated with specific plant communities, geology, soil pH and rock cover are the principal elements responsible for shaping the vegetation mosaic. Rather than a broad ecotone, the vegetation of the study area is understood as a complex mosaic mountain vegetation entity. / Environmental Sciences / Ph. D. (Environmental Sciences)
3

Estimation of aboveground terrestrial net primary productivity and analysis of its spatial and temporal trends in the conterminous United States from 1997 to 2007 using NASA-CASA model

Khanal, Sami 01 May 2010 (has links)
This study estimated monthly and annual Net Primary Productivity (NPP), an important indicator of carbon sequestration, in the Conterminous US from 1997 to 2007 using Carnegie-Ames-Stanford Approach. Vegetation condition, temperature, precipitation, photosynthetically active radiation and soil water holding capacity were used as model’s inputs. NPP values were lower than mean annual values during the year 2000 to 2003 which was probably due to extreme drought conditions during these years. Higher NPP per square meter was generally found in Savannah and Subtropical eco-divisions whereas Tropical/Subtropical deserts had the lowest NPP. Southeastern states had the highest NPP per square meter thus, made the highest contribution to the terrestrial carbon sequestration in US. Since the vegetation is one of the main factors in NPP and thus carbon sequestration, the results of this study could help in various environmental policy decisions on forest and cropland management at the state, EPA and federal levels.
4

Spatialisation du bilan hydrique des sols pour caractériser la distribution et la croissance des espèces forestières dans un contexte de changement climatique / Soil water balance mapping to characterize forest species growth and distribution in a climate change context

Piedallu, Christian 09 January 2012 (has links)
De nombreuses recherches se focalisent sur l'étude des aires de distribution des espèces qui se décalent vers des conditions plus adaptées à leurs besoins physiologiques sous l'effet du changement climatique. Le choix des indices utilisés pour caractériser l'écologie des espèces et définir leur vulnérabilité au réchauffement en cours est souvent conditionné par leur disponibilité, alors qu'il devrait être basé sur les connaissances en écophysiologie qui les concernent. D'autre part, la résolution spatiale parfois grossière utilisée n'est pas toujours pertinente au regard de l'échelle à laquelle les processus biologiques se déroulent. Dans ce cadre, l'objectif de ce travail est de cartographier à fine résolution spatiale les bilans en eau des sols et leurs différentes composantes à l'échelle des forêts de France, et d'évaluer leur intérêt pour modéliser la distribution ou la productivité des espèces au regard des indices traditionnellement utilisés. Dans un premier temps, nous avons modélisé et cartographié les différentes composantes du bilan en eau des sols, et tout particulièrement le rayonnement solaire et la réserve utile maximale en eau (RUM) des sols forestiers à partir des relevés de l'Inventaire Forestier National (IFN). Ces données ont été combinées avec des températures et des précipitations pour spatialiser le bilan en eau des sols forestiers de France. Les principaux résultats montrent l'importance de la nébulosité dans la prise en compte du calcul du rayonnement solaire, et l'inefficacité des indices dérivés de l'exposition pour en simuler les valeurs à l'échelle de la France. Nous avons également déterminé qu'il est possible de réaliser avec des informations simples à collecter une carte des RUM des sols forestiers de France. Elle permet de prédire la croissance des essences avec une efficacité comparable aux valeurs relevées sur des placettes et d'améliorer la modélisation de la distribution de certaines essences. Enfin, nous démontrons que les calculs de bilans en eau qui prennent en compte la réserve en eau des sols sont plus efficaces que les bilans hydriques climatiques ou les pluies, particulièrement pour ce qui concerne les espèces hygrophiles ou xérophiles. Ces résultats laissent penser que l'importance de l'eau a été sous-estimée dans l'analyse de la distribution des espèces et l'étude des conséquences du changement climatique sur les plantes. Les données produites permettent de progresser dans la connaissance de l'écologie des espèces et de mieux caractériser la vulnérabilité des espèces, ouvrant la porte à la création d'outils plus fonctionnels pour aider les gestionnaires à évaluer les impacts du changement de climat et à s'y adapter. / Numerous researches focus on species distribution shifts toward ecological conditions most suited to plants under climate change. Ecological indices used to characterize species ecology and to define their vulnerability over broad areas are often at coarse resolution and are determined by data availability. The aim of this work was to map soil water balance and its different components at a fine spatial resolution, and to evaluate their interest to model plant distribution and growth over the whole French forests. We firstly modeled and mapped the solar radiation and the soil water holding capacity of forest soils. These data were combined with temperatures and precipitation to map the soil water balance. For solar radiation, the main results showed that this parameter is only accurately predicted at the French scale when cloudiness is taken into account. We also showed that soil water holding capacity can be mapped at the French scale using the basic information collected on numerous plots from the French national forest inventory. Values extracted from the soil water holding capacity map allowed predicting tree species growth with efficiency similar to values estimated on plots. We also demonstrated soil water balance is more efficient than climatic water balance or precipitation to model species distribution, mainly for hygrophilous and xerophilous species. These results suggest importance of available water could be underestimated when determining the ecological niche of species. These maps allow to improve species ecology knowledge and to help in the determination of their vulnerability area to climate change.
5

Spatiotemporal Analysis of Variability in Soil Volumetric Water Content and Spatial Statistical Methods for Management Zone Delineation for Variable Rate Irrigation

Larsen, Isak Lars 01 March 2021 (has links)
Irrigated agriculture is the largest user of freshwater in a world experiencing increased water scarcity and water demands. Variable rate irrigation (VRI) aims to use water efficiently in crop production, resulting in good yields and water conservation. With VRI, the grower is able to employ custom irrigation rates for different parts of a field. Adoption of VRI has been limited due to the complexity of matching irrigation to spatiotemporal crop water needs and the cost/benefit economics of VRI equipment. The goal of this study was to quantify spatiotemporal variability of VWC in a field that has uniform soil type and discuss the driving factors that contribute to that variability. Soil samples were acquired at 66 and 87 locations during the 2019 growing season at two study sites. Soil samples from 32 and 48 locations within each study site were selected to be analyzed for soil texture properties. The USGS Web Soil Survey was also referenced. Both, the USGS data and the data collected for this project showed very uniform soils across both fields. The objectives of this study were i) to show variability of VWC within fields that contain uniform soil texture using univariate Local Moran’s I (LMI) and ii) to compare static VRI zones based on spatial patterns of readily available field data that might serve as surrogates for VRI zones created from measured variation of soil volumetric water content (VWC). Management zones created using readily available field data had reasonable correlations with VWC. In both study sites, elevation was found to be the best variable for delineating VRI zones that imitate measured VWC.

Page generated in 0.1427 seconds