Spelling suggestions: "subject:"solar flare"" "subject:"solar glare""
1 |
Spectral emission from high temperature plasmasGreer, Caroline J. January 1996 (has links)
No description available.
|
2 |
Spectroscopic Studies of the Dynamic Solar Chromosphere: Spicules and Flares / 太陽彩層のダイナミクスについての分光学的研究:スピキュールとフレアTei, Akiko 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22253号 / 理博第4567号 / 新制||理||1656(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 柴田 一成, 准教授 浅井 歩, 教授 一本 潔 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
3 |
Magnetic reconnection and particle acceleration in semi-collisional plasmasStanier, Adam January 2013 (has links)
Magnetic reconnection is an important mechanism for the restructuring of magnetic fields, and the conversion of magnetic energy into plasma heating and non-thermal particle kinetic energy in a wide range of laboratory and astrophysical plasmas. In this thesis, reconnection is studied in two semi-collisional plasma environments: flares in the solar corona, and the start-up phase of the Mega-Ampere Spherical Tokamak (MAST) magnetic confinement device. Numerical simulations are presented using two different plasma descriptions; the test-particle approach combined with analytical magnetohydrodynamic fields is used to model populations of high-energy particles, and a two-fluid approach is used to model the bulk properties of a semi-collisional plasma. With the first approach, a three-dimensional magnetic null-point is examined as a possible particle acceleration site in the solar corona. The efficiency of acceleration, both within the external drift region and in the resistive current sheet, is studied for electrons and protons using two reconnection models. Of the two models, it is found that the fan-reconnection scenario is the most efficient, and can accelerate bulk populations of protons due to fast and non-uniform electric drifts close to the fan current-sheet. Also, the increasing background field within the fan-current sheet is shown to stabilise particle orbits, so that the energy gain is not limited by ejection. With the second approach, the effects of two-fluid physics on merging flux-ropes is examined, finding fast two-fluid tearing-type instabilities when the strength of dissipation is weak. The model is then extended to the tight-aspect ratio toroidal-axisymmetric geometry of the MAST device, where the final state after merging is a MAST-like spherical tokamak with nested flux-surfaces and a monotonically increasing q-profile. It is also shown that the evolution of simulated 1D radial density profiles closely resembles the Thomson scattering electron density measurements in MAST. An intuitive explanation for the origin of the measured density structures is proposed, based upon the results of the toroidal Hall-MHD simulations.
|
4 |
Evolution and Flare Activity of δ-spots in Cycle 23 / 太陽活動第23期に観測されたデルタ型黒点群の時間発展とフレア活動Takizawa, Kan 24 November 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19359号 / 理博第4121号 / 新制||理||1593(附属図書館) / 32373 / 新制||理||1593 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 一本 潔, 教授 柴田 一成, 准教授 野上 大作 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
5 |
Theoretical and Observational Studies of Small-Scale Flares and Associated Mass Ejections/Jets / 太陽で起きる小規模なフレアと付随する質量放出・ジェットに関する理論的・観測的研究Kotani, Yuji 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24415号 / 理博第4914号 / 新制||理||1702(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 浅井 歩, 教授 一本 潔, 教授 横山 央明 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
6 |
The Automated Prediction of Solar Flares from SDO Images Using Deep LearningAbed, Ali K., Qahwaji, Rami S.R., Abed, A. 21 March 2021 (has links)
Yes / In the last few years, there has been growing interest in near-real-time solar data processing, especially for space weather applications. This is due to space weather impacts on both space-borne and ground-based systems, and industries, which subsequently impacts our lives. In the current study, the deep learning approach is used to establish an automated hybrid computer system for a short-term forecast; it is achieved by using the complexity level of the sunspot group on SDO/HMI Intensitygram images. Furthermore, this suggested system can generate the forecast for solar flare occurrences within the following 24 h. The input data for the proposed system are SDO/HMI full-disk Intensitygram images and SDO/HMI full-disk magnetogram images. System outputs are the “Flare or Non-Flare” of daily flare occurrences (C, M, and X classes). This system integrates an image processing system to automatically detect sunspot groups on SDO/HMI Intensitygram images using active-region data extracted from SDO/HMI magnetogram images (presented by Colak and Qahwaji, 2008) and deep learning to generate these forecasts. Our deep learning-based system is designed to analyze sunspot groups on the solar disk to predict whether this sunspot group is capable of releasing a significant flare or not. Our system introduced in this work is called ASAP_Deep. The deep learning model used in our system is based on the integration of the Convolutional Neural Network (CNN) and Softmax classifier to extract special features from the sunspot group images detected from SDO/HMI (Intensitygram and magnetogram) images. Furthermore, a CNN training scheme based on the integration of a back-propagation algorithm and a mini-batch AdaGrad optimization method is suggested for weight updates and to modify learning rates, respectively. The images of the sunspot regions are cropped automatically by the imaging system and processed using deep learning rules to provide near real-time predictions. The major results of this study are as follows. Firstly, the ASAP_Deep system builds on the ASAP system introduced in Colak and Qahwaji (2009) but improves the system with an updated deep learning-based prediction capability. Secondly, we successfully apply CNN to the sunspot group image without any pre-processing or feature extraction. Thirdly, our system results are considerably better, especially for the false alarm ratio (FAR); this reduces the losses resulting from the protection measures applied by companies. Also, the proposed system achieves a relatively high scores for True Skill Statistics (TSS) and Heidke Skill Score (HSS).
|
7 |
Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS : avaliação na região brasileiraMatsuoka, Marcelo Tomio January 2007 (has links)
Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC – Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul. Esta pesquisa tem como principal meta o estudo do comportamento do erro devido à ionosfera na região brasileira em diferentes situações ionosféricas com base em valores de TEC advindos das estações GPS da RBMC e da rede IGS da América do Sul. Outro objetivo é avaliar a performance e as limitações do Mapa Global da Ionosfera do IGS aplicado no posicionamento por ponto na região brasileira. / In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo – Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments. The goal of this research is to study the ionospheric error behavior in the Brazilian region, considering different ionosphere situations, using TEC values computed by GPS data from RBMC and IGS network. Other goal is to evaluate the performance and limitations of Global Ionospheric Map of IGS applied in the GPS point positioning in Brazil.
|
8 |
Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS : avaliação na região brasileiraMatsuoka, Marcelo Tomio January 2007 (has links)
Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC – Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul. Esta pesquisa tem como principal meta o estudo do comportamento do erro devido à ionosfera na região brasileira em diferentes situações ionosféricas com base em valores de TEC advindos das estações GPS da RBMC e da rede IGS da América do Sul. Outro objetivo é avaliar a performance e as limitações do Mapa Global da Ionosfera do IGS aplicado no posicionamento por ponto na região brasileira. / In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo – Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments. The goal of this research is to study the ionospheric error behavior in the Brazilian region, considering different ionosphere situations, using TEC values computed by GPS data from RBMC and IGS network. Other goal is to evaluate the performance and limitations of Global Ionospheric Map of IGS applied in the GPS point positioning in Brazil.
|
9 |
Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS : avaliação na região brasileiraMatsuoka, Marcelo Tomio January 2007 (has links)
Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC – Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul. Esta pesquisa tem como principal meta o estudo do comportamento do erro devido à ionosfera na região brasileira em diferentes situações ionosféricas com base em valores de TEC advindos das estações GPS da RBMC e da rede IGS da América do Sul. Outro objetivo é avaliar a performance e as limitações do Mapa Global da Ionosfera do IGS aplicado no posicionamento por ponto na região brasileira. / In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo – Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments. The goal of this research is to study the ionospheric error behavior in the Brazilian region, considering different ionosphere situations, using TEC values computed by GPS data from RBMC and IGS network. Other goal is to evaluate the performance and limitations of Global Ionospheric Map of IGS applied in the GPS point positioning in Brazil.
|
10 |
Midlatitude D Region Variations Measured from Broadband Radio AtmosphericsHan, Feng January 2011 (has links)
<p>The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (<italic>D</italic> region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the <italic>D</italic> region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of <italic>D</italic> region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code.</p><p>In order to understand the time scales, magnitudes and sources for the midlatitude nighttime <italic>D</italic> region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the <italic>D</italic> region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements.</p><p>Based on sferic data similar to those for nighttime, we also measured the daytime <italic>D</italic> region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime <italic>D</italic> region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5-4 Å), rather than the long (wavelength 1-8 Å) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large.</p><p>By applying the nighttime and daytime measurement techniques, we also derived the <italic>D</italic> region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.</p> / Dissertation
|
Page generated in 0.0589 seconds