• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • Tagged with
  • 20
  • 20
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS: avaliação na região brasileira

Matsuoka, Marcelo Tomio [UNESP] 28 February 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-02-28Bitstream added on 2014-06-13T21:01:19Z : No. of bitstreams: 1 matsuoka_mt_dr_prud.pdf: 13818049 bytes, checksum: ffbf4629b778855c81e385452f044bfb (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC - Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul. / In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo - Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments.
12

Fundamental Magnetohydrodynamic Processes of Solar Flares: Formation of Flare-productive Regions and Evolution of Flare Loops / 太陽フレアの基礎的磁気流体過程:フレア活動性の高い領域の形成とフレアループの進化

Takasao, Shinsuke 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19503号 / 理博第4163号 / 新制||理||1598(附属図書館) / 32539 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 柴田 一成, 教授 一本 潔, 教授 嶺重 慎 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
13

Characterization and Modeling of Solar Flare Effects in the Ionosphere Observed by HF Instruments

Chakraborty, Shibaji 08 June 2021 (has links)
The ionosphere is the conducting part of the upper atmosphere that plays a significant role in trans-ionospheric high frequency (HF, 3-30 MHz) radiowave propagation. Solar activities, such as solar flares, radiation storms, coronal mass ejections (CMEs), alter the state of the ionosphere, a phenomenon known as Sudden Ionospheric Disturbance (SID), that can severely disrupt HF radio communication links by enhancing radiowave absorption and altering signal frequency and phase. The Super Dual Auroral Radar Network (SuperDARN) is an international network of low-power HF coherent scatter radars distributed across the globe to probe the ionosphere and its relation to solar activities. In this study, we used SuperDARN HF radar measurements with coordinated spacecraft and riometer observations to investigate statistical characteristics and the driving mechanisms of various manifestations of solar flare-driven SIDs in HF observations. We begin in Chapter 2 with a statistical characterization of various effects of solar flares on SuperDARN observations. Simultaneous observations from GOES spacecraft and SuperDARN radars confirmed flare-driven HF absorption depends on solar zenith angle, operating frequency, and intensity of the solar flare. The study found flare-driven SID also affects the SuperDARN backscatter signal frequency, which produces a sudden rise in Doppler velocity observation, referred to as the ``Doppler flash'', which occurs before the HF absorption effect. In Chapter 3, we further investigate the HF absorption effect during successive solar flares and those co-occurring with other geomagnetic disturbances during the 2017 solar storm. We found successive solar flares can extend the ionospheric relaxation time and the variation of HF absorption with latitude is different depending on the type of disturbance. In Chapter 4, we looked into an inertial property of the ionosphere, sluggishness, its variations with solar flare intensity, and made some inferences about D-region ion-chemistry using a simulation study. Specifically, we found solar flares alter the D-region chemistry by enhancing the electron detachment rate due to a sudden rise in molecular vibrational and rotational energy under the influence of enhanced solar radiation. In Chapter 5, we describe a model framework that reproduces HF absorption observed by riometers. This chapter compares different model formulations for estimating HF absorption and discusses different driving influences of HF absorption. In Chapter 6, we have investigated different driving mechanisms of the Doppler flash observed by SuperDARN radars. We note two particular findings: (i) the Doppler flash is predominantly driven by a change in the F-region refractive index and (ii) a combination of solar flare-driven enhancement in photoionization, and changes in the zonal electric field and(or) ionospheric conductivity reduces upward ion-drift, which produces a lowering effect in the F-region HF radiowave reflection height. Collectively, these research findings provide a statistical characterization of various solar flare effects on the ionosphere seen in the HF observations, and insights into their driving mechanisms and impacts on ionospheric dynamics. / Doctor of Philosophy / The Earth's ionosphere, extending from about 60 km to 1000 km in altitude, is an electrically charged region of the upper atmosphere that exists primarily due to ionization by solar X-ray and extreme ultraviolet radiation. The ionosphere is an effective barrier to energetic electromagnetic (EM) radiation and charged particles originating from the Sun or any other extraterrestrial sources and protect us against harmful space radiation. High frequency (HF, 3-30 MHz) radio communication, broadly used for real-time medium and long-range communication, is strongly dependent on the state of the ionosphere, which is susceptible to solar activities, such as solar flares, solar energetic particles (SEPs), and coronal mass ejections (CMEs). Specifically, we are interested in the impacts of solar flares. In this study, we use Super Dual Auroral Radar Network (SuperDARN) HF radars, ground-based riometers, and coordinated spacecraft observations to investigate the driving mechanisms of various space weather impacts on the ionosphere and radiowave propagation following solar flares. We begin in Chapter 2 with a characterization of various kinds of ionospheric disturbances manifested in SuperDARN backscattered signal following solar flares. Specifically, we characterized HF absorption effects and frequency anomalies experienced by traveling radiowaves, also known as Shortwave Fadeout (SWF) and Sudden Frequency Deviations (SFDs), respectively. In SuperDARN HF radar observations, SFDs are recorded as a sudden enhancement in Doppler velocity, which is referred to as the ``Doppler flash''. In Chapter 3, we investigate a special event study that elucidates the nonlinear physics behind HF absorption caused by multiple simultaneous solar flares and flares co-occurring with SEPs and CMEs. In Chapter 4, we explore an inertial property of the ionosphere, known as sluggishness, and its dependence on solar flares can provide important information about the chemical proprieties of the ionosphere. We found that the enhanced solar radiation during a solar flare increases the molecular vibrational and rotational energy that in turn enhances the electron detachment rate and reduces ionospheric sluggishness. In Chapter 5, we describe a framework to estimate HF absorption observed by riometers following solar flares. We analyze the influence of different physical parameters, such as collision frequency and electron temperature, on HF absorption. In Chapter 6, we delved into the physical processes that drive the Doppler flash in SuperDARN observations following solar flares. We find, (i) the Doppler flash is predominately driven by change in the F-region refractive index and (ii) a combination of solar flare-driven enhancement in photoionization, and change in zonal electric field and(or) ionospheric conductivity reduces upward ion-drift, which produces a lowering effect in the F-region HF radiowave reflection height. Taken together, these research findings provide new insights into solar flare impacts on the ionosphere and could be used to improve forecasting of ionospheric space weather disturbances following solar flares.
14

Influência de diferentes condições da ionosfera no posicionamento por ponto com GPS : avaliação na região brasileira /

Matsuoka, Marcelo Tomio. January 2007 (has links)
Orientador: Paulo de Oliveira Camargo / Banca: João Francisco Galera Monico / Banca: Márcio H. O. Aquino / Banca: Inez Staciarini Batista / Banca: Claudio Antonio Brunini / Após a desativação da técnica SA, a ionosfera tornou-se a principal fonte de erro no posicionamento com GPS. O erro associado à ionosfera é diretamente proporcional ao conteúdo total de elétrons (TEC - Total Electron Content) presente ao longo do caminho da trajetória percorrida pelo sinal na ionosfera e inversamente proporcional ao quadrado da freqüência do sinal. O TEC, e conseqüentemente o erro devido à ionosfera, variam no tempo e no espaço e é influenciado por diversas variáveis, tais como: ciclo solar, época do ano, hora do dia, localização geográfica, atividade geomagnética, entre outros. A região brasileira é um dos locais que apresenta os maiores valores e variações espaciais do TEC e onde estão presentes diversas particularidades da ionosfera, tais como, a anomalia equatorial e o efeito da cintilação ionosférica. Desta forma, é importante a realização de pesquisas que visam estudar o comportamento do TEC, e conseqüentemente do erro devido à ionosfera no Brasil, que é um trabalho complexo devido aos diversos fatores que influenciam a variação do TEC, além das particularidades presentes na região brasileira. Estudos desta natureza podem auxiliar a comunidade geodésica brasileira, e demais usuários do GPS, no entendimento das limitações impostas pela ionosfera nas regiões de interesse. Devido à natureza dispersiva da ionosfera, o estudo do comportamento do TEC no Brasil pode ser realizado utilizando os dados GPS de receptores de dupla freqüência pertencentes à RBMC (Rede Brasileira de Monitoramento Contínuo). Adicionalmente, para uma melhor análise, pode-se também utilizar dados das estações da rede IGS (International GNSS Service) da América do Sul. / In the SA absence, the ionosphere is the largest error source in GPS positioning. The error due to the ionosphere in the GPS observables depends on the signal frequency and Total Electron Content (TEC) in the ionospheric layer. The TEC varies regularly in time and space in relation to the sunspot number, the season, the local time, the geographic position, and others. The Brazilian region is one of the regions of the Earth that presents largest values and space variations of the TEC, being influenced by the equatorial anomaly of ionization and ionospheric scintillation. Therefore, it is important to study the TEC behavior in the Brazilian region. Due to the ionosphere dispersive nature, the TEC behavior in Brazil can be studied using GPS data from RBMC (Rede Brasileira de Monitoramento Contínuo - Brazilian Network for Continuous Monitoring of GPS). Additionally, GPS data from IGS (International GNSS Service) network of the South America can also be used in the experiments. / Doutor
15

Estudo dos efeitos de explosões solares na região D ionosférica por meio de ondas em VLF

Silva, Adriano Magno Rodrigues da 28 April 2017 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2017-11-13T12:52:27Z No. of bitstreams: 1 PDF - Adriano Magno Rodrigues da Silva.pdf: 16317001 bytes, checksum: 61c5d1367cca18239376cb2cc040dac2 (MD5) / Made available in DSpace on 2017-11-13T12:52:27Z (GMT). No. of bitstreams: 1 PDF - Adriano Magno Rodrigues da Silva.pdf: 16317001 bytes, checksum: 61c5d1367cca18239376cb2cc040dac2 (MD5) Previous issue date: 2017-04-28 / The D Region is the lowest portion of Ionosphere and its formation depends on the solar radiation, mainly of Lyman-α. Because of this, the D Region only exists during the day. A solar flare releases X-Rays, which are able to penetrate into the D Region and increase the ionization level, consequently inducing its lowering. Once the D Region act as a boundary of Earth-Ionosphere Waveguide, any modification produces important variations both in Very Low Frequency (VLF) radio signals amplitude and in phase. For this research was used X- Rays flow measurements obtained from the Geostationary Operational Environmental Satellite and VLF data during the period of March (2011) and July (2012), obtained by South America VLF Network. These chosen VLF signal paths correspond to the NAA Transmitter Station in Cutler, USA, and from two Receptor Stations in South America: ATI Station in Atibaia, Brazil, and the PLO Station at Punta Lobos, Peru. The VLF data allows through alterations, both in signal amplitude and in phase, alongside with X-Rays flows data to identify Ionospheric events caused by solar flares. The results of this study indicate alterations occurred in analyzed signals; this happened because of the D Region lowering caused by ionization, which came from X-Rays released through Solar Flares. One of these analyzed events started at 6:08 p.m. UTC on March 8th, 2011, and peak X-Ray release at 6:28 p.m. UTC. The signal’s amplitude increments on the pre-event state was until 11.43% to the route: NAA–ATI, and until 12.13% to the route: NAA–PLO during the mentioned Solar Flare. / A Região D é a porção mais baixa da Ionosfera e a sua formação depende da Radiação Solar, principalmente a Lyman-α. Por esse motivo, tal região existe apenas durante o dia. Sabe-se que uma explosão solar emite raios X, os quais são capazes de penetrar até a Região D e aumentar o nível de ionização, provocando o seu rebaixamento. Uma vez que a Região D comporta-se como fronteira do Guia de Onda Terra-Ionosfera, qualquer modificação nela produz variações importantes, tanto na amplitude como na fase de sinais de rádio em Very Low Frequency (VLF). Nesta Pesquisa, foram utilizadas medições dos fluxos de raios X, obtidos por meio do Satélite Geostationary Operational Environmental Satellite e dados de VLF correspondentes ao período do mês de março de 2011 e Julho de 2012, obtidos da rede South America VLF Network. Os trajetos dos sinais de VLF escolhidos correspondem à Estação Transmissora NAA em Cutler, nos Estados Unidos da América e duas Estações Receptoras na América do Sul: Estação ATI em Atibaia no Brasil e a Estação PLO em Punta Lobos, no Peru. Os dados de VLF permitem, por meio das alterações, tanto na amplitude como na fase dos sinais, juntamente com os dados de fluxo de raios X, identificar eventos ionosféricos promovidos pelas explosões solares. Os resultados deste estudo indicam que as alterações ocorridas nos sinais analisados aconteceram devido a um rebaixamento da Região D, ocasionado pela ionização advinda da emissão de raios X das Explosões Solares. Um dos eventos analisados ocorreu a partir das 18h08min UT do dia 08/03/2011 e houve por volta das 18h28min UT, o momento de maior emissão de raios X. Os incrementos nas amplitudes dos sinais, relativamente ao estado de pré-evento, foram de até 11,43% para o trajeto entre NAA– ATI e de até 12,13% para o trajeto NAA–PLO durante a Explosão Solar descrita.
16

Astrostatistics: Statistical Analysis of Solar Activity from 1939 to 2008

Yousef, Mohammed A. 10 April 2014 (has links)
No description available.
17

Atividade solar em comprimentos de onda mm e sub-mm e sua associação com uma ejeção de massa coronal

Ramírez, Ray Fernando Hidalgo 17 June 2015 (has links)
Made available in DSpace on 2016-03-15T19:35:53Z (GMT). No. of bitstreams: 1 Ray Fernando Hidalgo Ramirez.pdf: 3985319 bytes, checksum: 0a36b0e596cb2c3f1eadaccfa8f843ee (MD5) Previous issue date: 2015-06-17 / Universidade Presbiteriana Mackenzie / Solar flares radio emissions provide detailed information on the energy release, particle acceleration, heating processes and plasma conditions at the sites where the radiation is generated. This study focuses in radio emission from millimeter, sub-millimeter and another complementary wavelengths obtained by recent observations that might improve the understanding of processes from the low chromosphere to the corona. Here we study a GOES class X1.7 flare on January 27, 2012 detected by the Solar Sub-millimeter Telescope (SST) at 212 and 405 GHz, and by the solar radio polarimeters (POEMAS) at 45 and 90 GHz. LASCO C2 coronagraph observed a coronal mass ejection (CME) with possible physical connection with phenomena observed at radio-frequencies, including changes in polarization degree (45 and 90 GHz) and enhancements of scintillation index (212 and 405 GHz). The complementary radio observations were obtained by the Radio Solar Telescopes Network (RSTN) at the single frequencies 0.2, 0.4, 0.6, 1.4, 2.7, 4.9, 8.8 and 15.4 GHz and at the 25 - 180 MHz band, and by the Green Bank Solar Radio Burst Spectrometer (GBSRBS) at the 100 - 300 MHz and 300 - 1200 MHz bands. The solar flare exhibits a complex time structure at microwaves consisting of three major enhancements. Type III-like metric and decametric bursts were accompanied by small polarized burst at 45 and 90 GHz with polarization degrees of 0.09 and 0.12, suggesting changes in the magnetic field strength the order of 700 and 2000 G, respectively. SST detected one impulsive burst and significant 10% enhancements of scintillation index intermittently throughout the event. The CME launch time inferred by back extrapolation of the LASCO coronagraph observations to the solar limb coincides approximately in time to the changes in polarization degree, suggesting that CME might be a result of a magnetic transient causing an instability generating the subsequent impulsive structures. / As emissões em rádio das explosões solares provém informações detalhadas dos processos de liberação de energia, aceleração de partículas, aquecimento e condições do plasma na região onde a radiação é gerada. Este estudo concentra-se em rádio emissões nos comprimentos de onda milimétricos, sub-milimétricos e outras frequências complementares obtidas por observações recentes que podem melhorar o entendimento dos processos na baixa cromosfera até a coroa. Foi estudada uma explosão solar classe GOES X1.7 ocorrida no dia 27 de janeiro de 2012, detectada pelo Telescópio Solar Sub-milimétrico (SST) em 212 e 405 GHz e pelos rádio polarímetros solares em 45 e 90 GHz. Uma ejeção de massa coronal (CME) foi observada pelo coronógrafo C2 de LASCO com possível conexão física com os fenômenos observados em rádio frequências, incluindo mudanças no grau de polarização (45 e 90 GHz) e aumentos no índice de cintilação (212 e 405 GHz). As rádio observações complementares foram obtidas em frequências distintas, pela Rede de Rádio Telescópios Solares (RSTN), de 0,2; 0,4; 0,6; 1,4; 2,7; 4,9; 8,8 e 15,4 GHz e nas faixas de 25 - 180 MHz, e pelo Rádio Espectrômetro Solar Green Bank (GBSRBS) nas faixas de 100 - 300 MHz e 300 - 1200 MHz. A explosão solar apresenta uma estrutura temporal complexa em micro-ondas composta por três aumentos característicos. Explosões métricas e decamétricas tipo III foram acompanhadas por pequenas explosões com polarização em 45 e 90 GHz com graus de polarização de 0,09 e 0,12, sugerindo variações de campo magnético da ordem de 700 e 2000 G, respectivamente. O SST detectou uma explosão impulsiva e aumentos significativos de 10% no índice de cintilação de forma intermitente durante todo o evento. O tempo de lançamento da CME inferido por extrapolação das observações do coronógrafo LASCO ao limbo solar coincide aproximadamente com o instante do excesso de emissão e mudança do grau de polarização em 45 e 90 GHz, sugerindo que a CME tenha resultado de um transiente magnético ocasionando uma instabilidade que gerou as estruturas impulsivas subsequentes.
18

Observatório Solar Mackenzie: descrição, procedimentos observacionais e resultados

Kudaka, Amauri Shossei 20 August 2015 (has links)
Made available in DSpace on 2016-03-15T19:35:55Z (GMT). No. of bitstreams: 1 Amauri Shossei Kudaka.pdf: 14809012 bytes, checksum: 1dc60260bb5dcd12adfa496880fb2a7e (MD5) Previous issue date: 2015-08-20 / High cadence solar observations in infrared and H-α are important tools for the study of active regions during solar flaring events. The acquisition and analysis of these observational data associated with information in other frequency bands, can be helpful in the study of emission mechanisms during solar flares. Recently it was installed at the Universidade Presbiteriana Mackenzie, São Paulo, the Mackenzie Solar Observatory, with the objective to provide research opportunities in Solar Physics. Experimental tests carried out in the Observatory should provide advances in instrumentation, assembly and procedures to be implemented and operated in collaboration with others observatories, for solar observations from ground and space. In this work, the physical structure of the Solar Observatory Mackenzie is described in details.Operating procedures of instruments and data acquisition are proposed, as well as the systematization of simultaneous observations at infrared and H-α. Despite the short time of operation, records of some solar events have already been obtained. / Observações solares em infravermelho e H-α, em alta cadência, são importantes ferramentas para o estudo de regiões ativas durante eventos solares explosivos. A obtenção e a análise destes dados observacionais, associados com informações em outras faixas do espectro, podem auxiliar no estudo dos mecanismos de emissão durante explosões solares. Recentemente foi instalado na Universidade Presbiteriana Mackenzie, São Paulo, o Observatório Solar Mackenzie, com o objetivo de fornecer oportunidades de pesquisa na área de Física Solar. Ensaios experimentais realizados no Observatório deverão proporcionar avanços na instrumentação, montagem e procedimentos a serem implementados e operados em colaboração com outros observatórios, para observações solares a partir do solo e do espaço. Neste trabalho, a estrutura física do Observatório Solar Mackenzie é descrita em detalhes. Procedimentos de operação dos instrumentos e de aquisição de dados são propostos, bem como a sistematização das observações simultâneas em infravermelho e H-α. Apesar do pouco tempo de operação, registros de vários eventos solares já foram obtidos.
19

Plataforma computacional híbrida de coprocessamento paralelo distribuído por web services aplicada à radiointerferometria

Silva, Gustavo Poli Lameirão da 19 August 2013 (has links)
Made available in DSpace on 2016-06-02T19:03:58Z (GMT). No. of bitstreams: 1 5593.pdf: 13078959 bytes, checksum: 1cc88a226e87c0a4ca26af32176acea5 (MD5) Previous issue date: 2013-08-19 / Financiadora de Estudos e Projetos / The requirements imposed by the new applications presents great challenges to the computation. There is not a perfect computer architecture, capable to attend to all the requirements. The parallel and hybrid computer arrangement rise as a solution to this scenario i.e., the CPU-Coprocessor pair arrangement can form a specialized computerized instrument for a special application task. This doctoral thesis proposes a parallel and hybrid computational platform denoted CoP-WS, that uses the interoperability technology known as Web Services. As coprocessor it is used the graphic processing unit, known as the GPU, functioning recently as parallel thread level processing of general use applications. The platform test of feasibility was inspired in radio astronomy, and it has been implemented two applications: a complex correlator of signals provided by a radio interferometric arrangement, and a flare recognition system with a solar radio interferometer image. Both processings can be inserted in the context of pipeline execution, using sufficient configuration of CPU-GPU pairs, having on one side the interferometric arrangement antenna signal input and in the other side the result of the solar flare recognition. The obtained results of the both applications show the feasibility of the CoP-WS platform, for greater volume of data being processed in quasi real time. In the case of the correlator the average processing time in each integration period was around 160 ms, and in the case of the solar flare recognition, 48 ms for each solar disk image. / Os requisitos impostos pelas novas aplicações, sejam estas científicas, ou não, apresentam grandes desafios à computação. Não existe uma arquitetura de computadores "perfeita" que seja capaz de atender a todos estes requisitos. A configuração de arranjos paralelos e híbridos de computadores se apresenta como uma solução para este cenário, ou seja, a configuração de arranjos de pares CPU-Coprocessador, pode ser especializada para o processamento de uma aplicação distintas. Este trabalho de doutorado propõe uma plataforma computacional paralela e híbrida distribuída denominada CoP-WS, que utiliza a tecnologia de interoperabilidade conhecida como Web Services. Como coprocessador é utilizada a unidade de processamento gráfico conhecida como GPU, cuja função tem sido de processamento paralelo ao nível de threads, para aplicações gerais nos últimos tempos. A prova de viabilidade da plataforma implementada foi inspirada na radioastronomia, tendo sido implementados dois aplicativos: um correlacionador complexo de sinais provindos dos arranjos interferométricos e um sistema para o reconhecimento de explosões solares, numa imagem de radiointerferometria solar. Ambos os processamentos podem ser inseridos num contexto de execução em pipeline, usando uma configuração suficiente de pares CPU-GPU, tendo de um lado a entrada dos sinais das antenas do arranjo interferométrico e do outro lado o resultado do processamento de reconhecimento de explosões solares. Em ambas aplicações os resultados foram satisfatórios sendo que no caso do correlacionador o tempo médio de processamento de cada ciclo de integração foi de aproximadamente 160 ms, e para a aplicação de reconhecimento de explosões solares, de 48 ms por imagem de disco solar.
20

Análise do campo elétrico atmosférico durante tempo bom e distúrbios geofísicos

Anaya, José Carlos Tacza 19 January 2015 (has links)
Made available in DSpace on 2016-03-15T19:35:52Z (GMT). No. of bitstreams: 1 JOSE CARLOS TACZA ANAYA.pdf: 7682166 bytes, checksum: f3eebed2cf5cb0f5ecda9415f8754978 (MD5) Previous issue date: 2015-01-19 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / In this dissertation, we present the capability of a new network of sensors to monitor the atmospheric electric field at various locations in South America. The main goal is to obtain the characteristic Universal Time daily curve of the atmospheric electric field in fair-weather. That curve is known as the Carnegie curve, which is related to the currents flowing in the Global Atmospheric Electric Circuit. This has been accomplished using monthly, seasonal and annual averages. After obtaining our standard curve of variation of the electric field in fair-weather, the deviations related to phenomena such as solar flares, solar protons events, geomagnetic storms, total solar eclipse and seismic activity are analyzed and commented. / Neste trabalho de dissertação apresenta-se a capabilidade de uma nova rede de sensores para monitorar o campo elétrico atmosférico em vários locais na América do Sul. O objetivo principal é obter a curva diária do campo elétrico atmosférico de tempo bom. Para isto foram realizadas médias mensais, sazonais e anuais. Essa curva é comparada com a curva característica em Tempo Universal conhecida como a Curva de Carnegie, a qual é relacionada com as correntes fluindo no Circuito Elétrico Atmosférico Global. Depois de obter a curva padrão de variação do campo elétrico atmosférico de tempo bom, foram analisados e comentados os desvios relacionados a explosões solares, eventos de prótons solares, tempestades geomagnéticas, eclipse solar e atividade sísmica.

Page generated in 0.0549 seconds