• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of a Hybrid Storage Framework Containing Battery and Supercapacitor on Uncertain Output of Wind and Solar Power Systems

K C, Bibek 01 December 2019 (has links)
Renewable energy resources (RES) are becoming more popular for electricity generation due to their easy installation, flexibility, low cost, environmental compatibility, etc. However, their fluctuating nature is a major drawback, which decreases the power quality and makes them less trusty in the power system. To mitigate this problem, battery energy storage (BES) has been widely used with renewable energy sources. Because batteries are designed to handle “steady fluctuations” of power, the “sudden and peak” fluctuating power levels of renewable energy sources may cause shorter life spans for them, which may cause dramatic economic loss or negatively impact the power quality. Also, even though batteries have been used as a backup for RES, high power quality cannot be guaranteed when there is a rapid and peak fluctuations on source/load.
2

Design and implementation of a power system for a solar unmanned aerial vehicle

Wilkins, Grant 04 June 2012 (has links)
M. Ing. / Solar powered UAV's have gained world wide attention with aircraft such as Solar Impulse and Quinetiq's Zephyr. UAV's in general are becomming increasingly popular, in 2006 80% of all US military ights over Iraq were UAV ights [38]. UAV's are the the most dynamic growth sector in the world aerospace industry having spent $3:4 billion in 2008 and is expected to be $5:8 billion in 2014. Solar Impulse has a budget of $94 million, Quinetiq has been awarded a $44:9 million contract to build 7 zephyrs. NASA has had several solar powered UAV projects. With advancements in solar and battery technologies solar powred UAV's are fast becomming a reality. The disadvantage of projects such as the Solar Impulse, Zephyr, Solong and Sky Sailor is they have extremely large budgets and have access to non commercial and highy specialized Chapter 1 | Problem Statement 10 products. The main purpose of the project is to develop a solar power system using only commercial products which can substancially increase the ight time of a UAV under sunny conditions. The project has several advantages: The project also provides a clean, green energy aspect. Because the energy provided by the solar cells is free and has no carbon footprint, the project is environmentally friendly; The project uses only commercially available products so it can easily be implemented and reproduced; The system developed for the project is not only limited to UAV's/ the project can be used in other applications such as Solar powered cars or robots. Due to the commercial nature of the big 4 solar aircraft information about their solar power systems is not easily available. The work presented here is an acedemic venture and will be freely available The project has many unknowns such as the size of the UAV, power requirements and available components. The research methodolgy used allows the unknowns to be determined using mathematical models and simulations. The models and simulations are further veri ed and altered accordingly to the actual implementation of the system. The project provides a step by step procedure to building a power system for a solar powered UAV. There are several building blocks in the project. Each building block forms a vital part of the system but can also be designed and implemented as a sigle entity. Only once each building block has achieved its own indavidual speci cations will they be integrated together to form the complete system. There are many risks and limitations within the project. The project is dependant on the type of UAV with respect to power requirements. Therefore the power system needs to provide as much solar power as possible to the UAV. If the available solar power is not su cient for level ight, the solar power must supliment the original power supply of the aircraft in a safe manner. There are many dangers when ying a UAV, if the UAV loses control it could potentially injure or even kill a person. Therefore outmost care needs to be taken to mitigate these risks. By the end of the project a solar power supply, capable of powering a UAV, will be delivered. With the given resources and the current state of technology the project should be a success.
3

Combining Solar Energy and UPS Systems

Bengtsson, Tobias, Hult, Håkan January 2014 (has links)
Solar Power and Uninterruptible Power Supply (UPS) are two technologies that are growing rapidly. The demand for solar energy is mainly driven by the trend towards cheaper solar cells, making it economically profitable for a larger range of applications. However, solar power has yet to reach grid parity in many geographical areas, which makes ways to reduce the cost of solar power systems important. This thesis investigates the possibility and potential economic synergies of combining solar power with UPS systems, which have been previously researched only from a purely technical point of view. This thesis instead evaluates the hypothesis that a combined solar and UPS system might save additional costs compared to regular grid-tied systems, even in a stable power grid. The primary reason is that on-line UPS systems rectifies and inverts all electricity, which means that solar energy can be delivered to the DC part of the UPS system instead of an AC grid, avoiding the installation of additional inverters in the solar power system. The study is divided into three parts. The first part is a computer simulation using MATLAB, which has an explorative method and aims to simulate a combined system before experimenting physically with it. The second part consists of experiments on a physical prototype system based on basic UPS and solar power components. The third part is an economical assessment of investment costs and energy balances, comparing two separate systems (UPS and solar power separate) to one combined (UPS & solar power). The results from the prototype system show that adding solar power to an UPS system does not interfere with the UPS functionality in any major way, however for optimal performance some additional integration may be necessary. On the contrary, the additional power terminal that the solar panels constitute, can increase system performance during certain operational conditions. The result of the economic analysis shows that a combined system has potential for both a lower investment cost due to cheaper components and increased energy savings through lower conversion losses. The conclusion from the study is that a combined solar energy and UPS system is technically feasible. Furthermore, a combined system has clear economic advantages over two separate systems. This means that a combined system might be economically profitable even in situations where a separate system is not. / Solenergi och avbrottsfri kraftförsörjning (UPS) är två tekniker som växer snabbt. Efterfrågan på solenergi ökar huvudsakligen på grund av den snabba utvecklingen mot billigare solceller, vilket lett till att solenergi blivit lönsamt i en större mängd applikationer. I många områden är solenergi dock fortfarande inte kostnadsmässigt konkurrenskraftigt jämfört med traditionella energikällor, vilket gör en fortsatt sänkning av kostnaderna för solenergi till en viktig fråga för solenergiindustrin. Detta examensarbete har som syfte att undersöka om det är tekniskt möjligt att kombinera solenergi med UPS-system samt potentialen för ekonomiska synergier med denna kombination. Tidigare forskning inom området har endast undersökt denna kombination från en rent teknisk synvinkel. Detta examensarbete driver istället hypotesen att ett kombinerat solenergi- och UPS-system kan leda till större kostnadsbesparingar jämfört med ett traditionellt nätanslutet solenergisystem, även i ett stabilt elnät som i Sverige. En on-line UPS skyddar en känslig last genom att kontinuerligt likrikta och sedan åter växelrikta inkommande ström för att därmed både isolera lasten från nätet samt höja strömkvalitén. I UPS-systemet finns därmed en likströmsdel dit solpanelerna direkt kan kopplas istället för att skicka den genererade solenergin ut på elnätet. Därmed undviks inköp och installation av sol-växelriktare i solenergisystemet. Studien är uppdelad i tre delar. Första delen är en datorsimulering i MATLAB och syftar till att explorativt undersöka det kombinerade systemet för en optimerad design innan fysiska experiment utförs. Den andra delen av studien utgörs av experiment på ett fysiskt prototypsystem baserat på ett principiellt UPS- och solenergisystem. Den tredje delen av studien är en ekonomisk analys av både investeringskostnader och energibalanser som jämför ett kombinerat system (UPS & sol) med två separata system (UPS & sol separat). Resultaten från prototypsystemet visar att påkopplandet av solceller i en principiell UPS har mycket låg påverkan på UPS-systemets funktionalitet, samt att solcellerna som en extra energikälla under vissa driftförhållanden kan ha en positiv påverkan på UPS-systemet. För optimal prestanda kan dock en viss integration av systemen krävas.  Resultatet från den ekonomiska analysen visar att ett kombinerat system har potential att sänka investeringskostnaden genom billigare komponenter. Ett kombinerat system kan även leda till en högre energibesparing jämfört med ett nätanslutet solenergisystem eftersom konverteringsförlusterna i UPS-systemet sjunker i det kombinerade systemet. Slutsatsen av studierna är att ett kombinerat solenergi- och UPS-system är tekniskt möjligt. Dessutom finns betydande ekonomiska synergier med ett kombinerat system. Detta innebär att ett kombinerat system kan vara lönsamt även i fall där ett separat solelsystem inte är det.
4

Analysis And Simulation Tools For Solar Array Power Systems

Pongratananukul, Nattorn 01 January 2005 (has links)
This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.
5

Development of Intelligent-Based Solar and Diesel-Wind Hybrid Power Control Systems

Chang-Chien, Nan-Yi 21 June 2010 (has links)
A solar and diesel-wind hybrid power control systems is proposed in the thesis. The system consists of solar power, wind power, diesel-engine, a static synchronous compensator and an intelligent power controller. MATLAB/Simulink was used to build the dynamic model and simulate the solar and diesel-wind hybrid power system. A static synchronous compensator was used to supply reactive power and regulate the voltage of the hybrid system. To achieve a fast and stable response for the real power control, an intelligent controller was proposed, which consists of the Radial Basis Function Network (RBFN) and the Elman Neural Network (ENN) for maximum power point tracking (MPPT). The pitch angle control of wind power uses ENN controller, and the output is fed to the wind turbine to achieve the MPPT. The solar system uses RBFN, and the output signal is used to control the DC / DC boost converters to achieve the MPPT.
6

Koncept nabíjecí stanice s možností off-grid provozu pro elektrokola / Concept of Charging Stations with off-grid Operation for Electric Bicycles

Leitman, Valentín January 2017 (has links)
This thesis deals with charging stations for electric bicycles powered by renewable energy. The aim of this work is to make a proposal for the hybrid charging stations for electric bicycles, which will work independently and, if necessary, will be backed up by a network. In this thesis is entered theoretical information on the issue of electric bicycles, the batteries, charging stations, the connectors of chargers, and photovoltaic systems. The practical part of this thesis is the basic design of the charging station and its design of the mathematical model of the individual parts in Simulink program, which are linked to the actual design of the charging station. In conclusion, this thesis deals with energy and economic analysis of the proposed system, therein included various methods of assessing investment recommendations of appropriate processing methods and overall assessment of the subject.

Page generated in 0.0985 seconds