• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polyaniline Nanofibers as the Hole Transport Medium in an Inverse Dye-Sensitized Solar Cell

Hesselsweet, Ian Brock 01 January 2010 (has links)
In order to become a viable alternative to silicon photovoltaics, dye-sensitized solar cells must overcome several issues primarily resulting from their use of a liquid electrolyte. Much research has gone into correcting these shortcomings by replacing the liquid electrolyte with solid-state hole-transport media. Using these solid-state materials brings new difficulties, such as completely filling the pores in the TiO₂nanostructure, and achieving good adhesion with the dye-coated TiO₂. A novel approach to addressing these difficulties is the inverse dye-sensitized solar cell design. In this method the devices are constructed in reverse order, with the solid-state hole-transport medium providing the nanostructure instead of the TiO₂. This allows new materials and methods to be used which may better address these issues. In this project, inverse dye-sensitized solar cells using polyaniline nanofibers as the hole transport medium were prepared and characterized. The devices were prepared on fluorine-doped tin oxide (FTO) coated glass electrodes. The first component was a dense spin-coated polyaniline blocking layer, to help prevent short circuiting of the devices. The second layer was a thin film of drop cast polyaniline nanofibers which acted as the hole transport medium and provided high surface area for the dye attachment. The dye used was 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP), which was covalently attached to the nanofibers using a Friedel-Crafts acylation. Titania gel was then deposited into the pores of the nanofiber film by controlled hydrolysis of a titanium complex (Tyzor LA). A back electrode of TiO₂nanoparticles sintered on FTO was pressed on top to complete the devices. A typical device generated an open circuit voltage of 0.17 V and a closed circuit current of 5.7 nA/cm² while the highest open circuit voltage recorded for any variation on a device was 0.31 V and the highest short circuit current was 52 nA/cm² under AM 1.5 simulated olar spectrum at 100 mW/cm². Initially prepared devices did not generate a measureable photocurrent due to two materials flaws. The first was traced to the poorly developed conduction band of the titania gel, as deposited from Tyzor LA hydrolysis, resulting in poor electron conduction. This prevented the titania gel from efficiently functioning as the electron transport medium. A remedy was found in adding a layer of sintered anatase TiO₂nanoparticles on the back electrode to serve as the electron transport medium. However, this remedy does not address the issue of the inability of titania gel to efficiently transport electrons photogenerated deep in the nanofiber film to the back electrode. The second flaw was found to originate from fast recombination kinetics between electrons in TiO₂and holes in polyaniline. However, a positive feature was that the titania gel intended to be used as the electron transport medium was found to sufficiently insulate the interface such that the recombination rate slowed enough to allow generation of a measureable photocurrent. Electronic insulation was further enhanced by co-attaching decanoic acid onto the polyaniline nanofibers to fill in pinholes between the dye molecules. While these solutions were not ideal, they were intended to be diagnostic in nature and supplied critical information about the weak links in the device design, thus pointing the way toward improving device performance. Significant enhancements can be expected by addressing these issues in further detail.
2

Fabrication and analysis of CIGS nanoparticle-based thin film solar cells

Ghane, Parvin 20 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fabrication and analysis of Copper Indium Gallium di-Selenide (CIGS) nanoparticles-based thin film solar cells are presented and discussed. This work explores non-traditional fabrication processes, such as spray-coating for the low-cost and highly-scalable production of CIGS-based solar cells. CIGS nanoparticles were synthesized and analyzed, thin CIGS films were spray-deposited using nanoparticle inks, and resulting films were used in low-cost fabrication of a set of CIGS solar cell devices. This synthesis method utilizes a chemical colloidal process resulting in the formation of nanoparticles with tunable band gap and size. Based on theoretical and experimental studies, 100 nm nanoparticles with an associated band gap of 1.33 eV were selected to achieve the desired film characteristics and device performances. Scanning electron microcopy (SEM) and size measurement instruments (Zetasizer) were used to study the size and shape of the nanoparticles. Electron dispersive spectroscopy (EDS) results confirmed the presence of the four elements, Copper (Cu), Indium (In), Gallium (Ga), and Selenium (Se) in the synthesized nanoparticles, while X-ray diffraction (XRD) results confirmed the tetragonal chalcopyrite crystal structure. The ultraviolet-visible-near infra-red (UV-Vis-NIR) spectrophotometry results of the nanoparticles depicted light absorbance characteristics with good overlap against the solar irradiance spectrum. The depositions of the nanoparticles were performed using spray-coating techniques. Nanoparticle ink dispersed in ethanol was sprayed using a simple airbrush tool. The thicknesses of the deposited films were controlled through variations in the deposition steps, substrate to spray-nozzle distance, size of the nozzle, and air pressure. Surface features and topology of the spray-deposited films were analyzed using atomic force microscopy (AFM). The deposited films were observed to be relatively uniform with a minimum thickness of 400 nm. Post-annealing of the films at various temperatures was studied for the photoelectric performance of the deposited films. Current density and voltage (J/V) characteristics were measured under light illumination after annealing at different temperatures. It was observed that the highest photoelectric effect resulted in annealing temperatures of 150-250 degree centigrade under air atmosphere. The developed CIGS films were implemented in solar cell devices that included Cadmium Sulfide (CdS) and Zinc Oxide (ZnO) layers. The CdS film served as the n-type layer to form a pn junction with the p-type CIGS layer. In a typical device, a 300 nm CdS layer was deposited through chemical bath deposition on a 1 $mu$m thick CIGS film. A thin layer of intrinsic ZnO was spray coated on the CdS film to prevent shorting with the top conductor layer, 1.5 μm spray-deposited aluminum doped ZnO layer. A set of fabricated devices were tested using a Keithley semiconductor characterization instrument and micromanipulator probe station. The highest measured device efficiency was 1.49%. The considered solar cell devices were simulated in ADEPT 2.0 solar cell simulator based on the given fabrication and experimental parameters. The simulation module developed was successfully calibrated with the experimental results. This module can be used for future development of the given work.
3

PV Based Converter with Integrated Battery Charger for DC Micro-Grid Applications

Salve, Rima January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis presents a converter topology for photovoltaic panels. This topology minimizes the number of switching devices used, thereby reducing power losses that arise from high frequency switching operations. The control strategy is implemented using a simple micro-controller that implements the proportional plus integral control. All the control loops are closed feedback loops hence minimizing error instantaneously and adjusting efficiently to system variations. The energy management between three components, namely, the photovoltaic panel, a battery and a DC link for a microgrid, is shown distributed over three modes. These modes are dependent on the irradiance from the sunlight. All three modes are simulated. The maximum power point tracking of the system plays a crucial role in this configuration, as it is one of the main challenges tackled by the control system. Various methods of MPPT are discussed, and the Perturb and Observe method is employed and is described in detail. Experimental results are shown for the maximum power point tracking of this system with a scaled down version of the panel's actual capability.

Page generated in 0.0669 seconds