Spelling suggestions: "subject:"solarus"" "subject:"belarus""
1 |
Performance Evaluation of the Solarus AB Asymmetric Concentrating Hybrid PV/T CollectorMoreno Puerto, Jose January 2014 (has links)
The energy sector is currently in a state of change as conventional energy sources are questioned by the need of new clean and sustainable energy sources to satisfy the global energy demand in the long term. Renewable energies respond to this increasing demand and solar energy is an advanced example of them. Photovoltaic modules are experiencing a steady reduction in their production costs. It is needed that this trend continues and, along with it, their propagation and expansion in the market continues. One way of reducing production costs is by using inexpensive light concentrators to increase the output of the costly photovoltaic cell. In this respect, the Solarus AB hybrid PV/T collector has been designed based on this principle. This collector is a CPC (Compound Parabolic Collector) and belongs to the MaReCo (Maximum Reflector Collector) family. The aim of this thesis is to deeply investigate this technology in two main areas. Firstly, the collector will be tested both electrically and thermally in order to evaluate its performance. To do so, a solar test rig has been built and connected at the building Hall 45 of Högskolan i Gävle, Gävle, Sweden. The second main area of investigation of this thesis is to determine the optimal price for the Solarus AB hybrid PV/T collector in order to be competitive in the solar energy market. This study will be based in the current market prices of photovoltaic and thermal collectors. Regarding the electrical performance of the collector, the results obtained show that the front side of the receiver produces more electricity throughout the day than the reflector side. This has guided Solarus AB to decide to change the design of its receiver to improve its performance. With the current design, it has been obtained a peak power at STC of 220W. In relation with the thermal part, the heat losses of the collector have been estimated obtaining a U value of 6,8W/(m2*K), a thermal optical beam efficiency of 63,5% and a total optical beam efficiency of 74,5%. The price market study of photovoltaic and thermal collector has shown that 2m2 of the Solarus AB hybrid PV/T collector produces approximately the same annual electricity and heat as 1,1m2 of a photovoltaic module with an efficiency of 15,5% and a flat plate collector of 0,85m2 of aperture area. According to the market study, its cost is equivalent to 190€ for the PV module and 220€ for the flat plate collector. This means that the price of the Solarus AB hybrid PV/T collector should be lower than 410€.
|
2 |
Construction of a C-PV prototypeAlmingol, Oscar January 2017 (has links)
The following Master Thesis will talk about a C-PV prototype using bifacial PV technology, based on the Solarus Collector. The Solarus Collector consists in two PV cells built on a metallic receiver, where there are some water channels flowing through it, allowing to cool down the PV cells, thus increasing their efficiency. The collector also presents a reflector to provide irradiance to the back part of the receiver, where the other PV cells are located. The new prototype will present bifacial PV cells but not a metallic receiver. This construction aims to reduce the price of the receiver, but will not have a system to cool down the solar cells. This Master Thesis will be developed in the Solarus facilities, in collaboration with the Solarus members. In order to grasp an idea of this prototype, two main procedures will be done. Regarding the bifacial technology, a bifacial PV module will be measured under different conditions, depending on which sides can be illuminated or shaded. On the other hand, a thermodynamic simulation will be carried out on different geometries of the reflector and receiver, in order to figure out the evolution of the temperatures on the new prototype. This simulation will be done with a finite element method, widely known in this applications. The results will show several problems concerning this prototype. Although the measurements of the bifacial PV module will result beneficial and informative, the problem with the temperature will tend to back down this prototype. The lack of some system to cool down the bifacial cells will imply that the receiver could reach unacceptable temperatures. This hypothesis will be drawn under some specific conditions, so they will not be completely devastating to the idea of using bifacial cells, but perhaps a different approach should be used in case it is desired to continue this work.
|
Page generated in 0.026 seconds