• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The synthesis, doping, and characterization of graphene films

Sojoudi, Hossein 22 August 2012 (has links)
Graphene, a two-dimensional counterpart of three-dimensional graphite, has attracted significant interest, due to its distinctive electrical and mechanical properties, for developing electronic, optoelectronic, and sensor technologies. In general, doping of graphene is important, as it gives rise to p-type and n-type materials, and it adjusts the work function of the graphene. This adjustment is necessary in order to control charge injection and collection in devices such as solar cells and light emitting devices. Current methods for graphene doping involve high temperature process or interactions with chemicals that are not stable. Moreover, the process of transferring graphene from its growth substrate and its exposure to the environment results in a host of chemical groups that can become attached to the film and alter its electronic properties by accepting or donating electrons/holes. Intentional and controllable doping of the graphene, however, requires a deeper understanding of the impact of these groups. The proposed research will attempt to clarify the unintentional doping mechanism in graphene through adsorption or desorption of gas/vapor molecules found in standard environments. A low temperature, controllable and defect-free method for doping graphene layers will also be studied through modifying the interface of graphene and its support substrate with self-assembled monolayers (SAMs) which changes the work function and charge carriers in the graphene layer. Furthermore, current methods of chemical vapor deposition synthesis of graphene requires the film to be transferred onto a second substrate when the metal layer used for growth is not compatible with device fabrication or operation. To address this issue, the proposed work will investigate a new method for wafer scale, transfer-free synthesis of graphene on dielectric substrates using new carbon sources. This technique allows patterned synthesis on the target substrate and is compatible with standard device fabrication technologies; hence, it opens a new pathway for low cost, large area synthesis of graphene films.
2

Influence of the Active Screen Plasma Power during Afterglow Nitrocarburizing on the Surface Modification of AISI 316L

Böcker, Jan, Puth, Alexander, Dalke, Anke, Röpcke, Jürgen, van Helden, Jean-Pierre, Biermann, Horst 16 April 2024 (has links)
Active screen plasma nitrocarburizing (ASPNC) increases the surface hardness and lifetime of austenitic stainless steel without deteriorating its corrosion resistance. Using an active screen made of carbon opens up new technological possibilities that have not been exploited to date. In this study, the effect of screen power variation without bias application on resulting concentrations of process gas species and surface modification of AISI 316L steel was studied. The concentrations of gas species (e.g., HCN, NH3, CH4, C2H2) were measured as functions of the active screen power and the feed gas composition at constant temperature using in situ infrared laser absorption spectroscopy. At constant precursor gas composition, the decrease in active screen power led to a decrease in both the concentrations of the detected molecules and the diffusion depths of nitrogen and carbon. Depending on the gas mixture, a threshold of the active screen power was found above which no changes in the expanded austenite layer thickness were measured. The use of a heating independent of the screen power offers an additional parameter for optimizing the ASPNC process in addition to changes in the feed gas composition and the bias power. In this way, an advanced process control can be established.

Page generated in 0.0462 seconds