• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Constructing Poly(Ionic Liquid)s-Based Composite Solid State Electrolytes and Application in Lithium Metal Batteries

Li, Jiajia January 1900 (has links)
The pursuit of reliable and high-performance batteries has fueled extensive research into new battery chemistries and materials, aiming to enhance the current lithium-ion battery technologies in terms of energy density and safety. Among the potential advancements, solid-state batteries (SSBs) have captured significant attention as the next-generation energy storage technology. One key factor contributing to their appeal is the utilization of solid-state electrolytes (SSEs) with a wide electrochemical stability window (ESW), making SSBs compatible with high-voltage cathodes. The energy density of SSBs can be further improved by employing the “holy-grail” anode, Li-metal, which boasts the lowest working voltage (-3.04 V vs. Li+/Li) and an ultrahigh theoretical capacity (3860 mAh g−1). Consequently, these batteries are referred to as lithium metal batteries (LMBs). However, realizing the full potential of LMBs presents formidable challenge, including the low ionic conductivity of current SSEs, large interfacial resistance between SSE and electrodes, uncontrollable interfacial reactions, and the growth of Li dendrites.  Typically, SSEs can be categorized into three types. Among these, solid composite electrolytes (SCEs) are considered the most promising choice for solid-state LMBs due to their combination of high ionic conductivity and excellent mechanical strength from inorganic solid electrolytes (ISEs) and the flexibility and good interface compatibility provided by solid polymer electrolytes (SPEs). Polymeric ionic liquids (PolyILs), which contain both ionic liquid-like moieties and polymer frameworks, have emerged as highly attractive alternatives to traditional polymers in SCEs.  The overall objective of this thesis was to develop PolyIL-based SCEs with enhanced ionic conductivity, wide ESW, high Li+ transference number, and reduced electrodes/electrolyte interface resistance. The main progress achieved in this thesis is as follows: 1. We selected three F-based Li-salts to prepare SPEs using poly(ethylene oxide) and polyimide. The investigation focused on assessing the impact of molecular size, F content, and chemical structures (F-connecting bonds) of these Li-salts. Additionally, we aimed to uncover the formation process of LiF in the solid electrolyte interphase (SEI). The result revealed that the F-connecting bond plays a more significant role than the molecular size and F element content, resulting in slightly better cell performance using LiPFSI compared to LiTFSI and substantially better performance compared to LiFSI. The preferential breakage of bonds in LiPFSI was found to be related to its position to Li anode. Consequently, we proposed the LiPFSI reduction mechanism based on these findings. 2. Using the template method, we synthesized a monolayer SCE with enhanced Li+ transference number and high ionic conductivity. In this study, boron nitride (BN) nanosheets with a high specific surface area and richly porous structure were employed as inert inorganic filler. These BN nanosheets played a crucial role in homogenizing the Li+ flux and facilitating the Li+ transmission to suppress Li dendrite growth. When integrated into a LiFePO4//Li cell with the optimized SCE, the assembled battery demonstrated remarkable cycling performance.  3. A monolayer GSCE with multifunctionality was synthesized via a natural sedimentation and subsequent UV-curing polymerization technique. This innovative method capitalizes on intrinsic gravity, allowing for the integration of multiple functions within a single layer, thereby eliminating the additional interlayer resistance. The developed GSCE provides an optimum Li+ transportation path and enhanced Li+ transference number, leading to an enhanced ionic conductivity and a long cycle life of Li//Li cells and SSLMBs. Compared with the monolayer uniform SCEs, the gradient structure also alleviates the uncoordinated thermal expansion between fillers and PolyIL, avoiding increased stress during the cycle and battery capacity fade.
2

Investigation on the effect of pore size and surface area of mesoporous silica on the conductivity of solid composite electrolytes / Undersökning av effekten av porstorlek och ytarea av mesoporös kiseldioxid på ledningsförmågan hos fasta kompositelektrolyter

Pedaprolu, Hitesh Khanna January 2022 (has links)
Solid-state batteries are gaining a lot of attention in the commecial sector today. Development of the solid state electrolytes is an important part in making commercially viable solid-state batteries. While many solid-state electrolytes are struggling with low ionic conductivity, some have shown comparatively high conductivities that can be engineered to perform better to be implemented for consumer market. Silica based solid composite electrolytes (SCEs) are one of the materials that are of huge interest as solid-state electrolytes. As a continuation of the previous research into the silica based SCE’s, the current work focuses on the study of SCEs based on the commercially available mesoporous silica (MPS) of different pore sizes and nanosized silica powder (SNP). Ionic Liquid electrolyte (ILE) based on Li-TFSI and BMP-TFSI mixture was used to prepare composities under different humidity conditions. The effect of the extent of -OH group functionalization of silica, determined by FTIR on treated and untreated powders, on ionic conductivity was also evaluated. Obtained composities were evaluated with electrochemical impedance spectroscopy (EIS) and analysed with TGA to establish correlations based on particle size and pore characteristics of MPS powder. Camparison with SNP was also made in anticipation to draw correlations with MPS. It was found that the pore size and pore volume change have more impact on the conductivity compared to surafce area of commercially obtained MPS and an unexplored pheonomenon was observed in case of SNP based SCE’s. Glovebox (GB) samples at relative humidity (RH)-0.005% have higher conductivity than dryroom samples at RH-0.5%. These findings can be used for a future reference in evaluating commercial MPS based composites as solid-state electrolytes. / Solid-state-batterier får stor uppmärksamhet i den kommersiella sektorn idag. Utveckling av fasta elektrolyter är en viktig del för att göra kommersiellt gångbara solid state-batterier. Medan många fasta elektrolyter kämpar med låg jonledningsförmåga, har vissa visat jämförelsevis höga ledningsförmåga som kan konstrueras för att prestera bättre för att implementeras för konsumentmarknaden. Kiselbaserade fasta kompositelektrolyter (SCE) är ett av de material som är av stort intresse som fasta elektrolyter. Som en fortsättning på den tidigare forskningen om de kiselbaserade SCE:erna fokuserar det nuvarande arbetet på studiet av SCE:er baserade på den kommersiellt tillgängliga mesoporösa kiseldioxiden (MPS) av olika porstorlekar och nanosized kiseldioxidpulver (SNP). Jonisk flytande elektrolyt (ILE) baserad på Li-TFSI och BMP-TFSI-blandning användes för att framställa kompositer under olika luftfuktighetsförhållanden. Effekten av omfattningen av -OH-gruppfunktionalisering av kiseldioxid, bestämd med FTIR på behandlade och obehandlade pulver, på jonkonduktiviteten utvärderades också. Erhållna sammansättningar utvärderades med elektrokemisk impedansspektroskopi (EIS) och analyserades med TGA för att fastställa korrelationer baserat på partikelstorlek och poregenskaper hos MPS-pulver. Kamparison med SNP gjordes också i väntan på att dra korrelationer med MPS. Det visade sig att porstorleken och porvolymsförändringen har mer inverkan på konduktiviteten jämfört med ytan för kommersiellt erhållen MPS och ett outforskat fenomen observerades i fallet med SNP-baserade SCE. Handskbox (GB) prover vid relativ fuktighet (RH)-0,005 % har högre konduktivitet än torrrumsprover vid RH-0,5 %. Dessa resultat kan användas för en framtida referens vid utvärdering av kommersiella MPS-baserade kompositer som fasta elektrolyter.

Page generated in 0.1097 seconds