• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and characterisation of some mixed metal oxides

Kim, Sang Hyun January 1993 (has links)
No description available.
2

Transition Metal Hydride Complexes and Hydrogenated Gallium Clusters : Synthesis and Structural Properties

Fahlquist, Henrik January 2013 (has links)
Synthesis and structural characterisation of metal hydrides in two important systems are presented. The first system presented is low valent cobalt and nickel complex hydrides with the compositions BaMg5Co2H10, RbMg5CoNiH10, SrMg2CoH7and Sr4Mg4Co3H19 featuring nickel with oxidation state of 0 and cobalt with oxidation state +I and -I. The second system presented is polyanionic gallium complex hydrides with the compositions RbGaH2, RbxK(1−x)GaH2 (0.5≤x≤1), CsxRb(8−x)Ga5H15 (0≤x≤8) and Cs10Ga9H25 featuring novel hydrogenous polyanionic gallium hydride clusters mimicking common hydrocarbons. The syntheses of the compounds were performed at elevated temperatures and at moderate hydrogen pressures (50-100 bar). The structural investigations were mainly done by X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD). The metal-hydrogen bond was investigated by vibrational spectroscopy using Fourier Transform IR-spectroscopy (FTIR) and Inelastic Neutron Scattering (INS).By subtle changes in the compositions of the hydrides it was possible to induce major changes in band gaps, oxidation states and structures. / <p>At the time for the doctoral defence the following papers were unpublished and had a status as follows: Paper 1: Manuscript; Paper 2: Accepted; Paper 5: Manuscript</p>
3

Investigating potential proton conductors: Doping BaTiO3 and SrTiO3 with Fe and Al / Undersökning av potentiella protonledare genom dopning av BaTiO3 och SrTiO3 med Fe och Al

Löfstrand, Julia January 2020 (has links)
There are many interesting applications of proton conducting oxides, such as electrolytes in fuel cells, hydrogen sensors and catalytic membranes for hydrogenation or dehydrogenation of organic compounds. Previous work explored doping BaTiO3 with the Rare Earth Element (REE) Sc to introduce oxygen vacancies in the structure, making it a Proton Conductor (PC). PC oxides are often perovskite materials, ABX3, wherethe A- or B-site are doped in such a way that less oxygen can be contained, creating oxygen vacancies. When these materials are then hydrated so that water molecules occupy the vacancies, hydrogen is essentially added to the system in the form of protons. This study expanded on those results, exploring possible dopants that are non-REEs, theoretically improving availability and cost. Fe and Al were chosen as B-site dopants and Sr was included as an alternative to Ba as the A-site cation, compensating for the smaller size of the Fe- and Al atoms compared to Ti. Solid state synthesis was used to manufacture the different compounds and then X-Ray Diffraction (XRD), ThermoGravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) were used inorder to investigate their properties. The main focus was to explore ift he materials could be synthesised using this method, their structures and how they reacted to hydration. All Al doped samples could not be made phase pure with the synthesis parameters used. BaTi0.5Fe0.5Oy was stabilised by the inclusion of Ti, as it did not decompose during hydration, unlike pure BaFeOx. Significant hydration was achieved in a wet nitrogen atmosphere at 185°C, but its structure type was hexagonal, which is known to be unfavourable for proton conduction. SrTi0.5Fe0.5Oy had a cubic structure which is a beneficial structural trait for proton conduction, but negligible hydration was observed by TGA. A small increase in cell volume indicates that it might still have taken up some water, but the methods used for hydration were not optimal for this material. The oxygen content of the materials was not determined in this project and methods such as Mössbauer spectroscopy and iodometric titration should be included in any related future studies.
4

Synthesis, Electrochemistry and Solid-Solution Behaviour of Energy Storage Materials Based on Natural Minerals

Ellis, Brian January 2013 (has links)
Polyanionic compounds have been heavily investigated as possible electrode materials in lithium- and sodium-ion batteries. Chief among these is lithium iron phosphate (LiFePO4) which adopts the olivine structure and has a potential of 3.5 V vs. Li/Li+. Many aspects of ion transport, solid-solution behaviour and their relation to particle size in olivine systems are not entirely understood. Morphology, unit cell parameters, purity and electrochemical performance of prepared LiFePO4 powders were greatly affected by the synthetic conditions. Partially delithiated olivines were heated and studied by Mössbauer spectroscopy and solid-solution behaviour by electron delocalization was observed. The onset of this phenomenon was around 470-500 K in bulk material but in nanocrystalline powders, the onset of a solid solution was observed around 420 K. The isostructural manganese member of this family (LiMnPO4) was also prepared hydrothermally. Owing to the thermal instability of MnPO4, partially delithiated LiMnPO4 did not display any solid-solution behaviour. Phosphates based on the tavorite (LiFePO4OH) structure include LiVPO4F and LiFePO4(OH)1-xFx which may be prepared hydrothermally or by solid state routes. LiVPO4F is a high capacity (2 electrons/transition metal) electrode material and the structures of the fully reduced Li2VPO4F and fully oxidized VPO4F were ascertained. Owing to structural nuances, the potential of the iron tavorites are much lower than that of the olivines. The structure of Li2FePO4F was determined by a combined X-ray and neutron diffraction analysis. The electrochemical properties of very few phosphates based on sodium are known. A novel fluorophosphate, Na2FePO4F, was prepared by both solid state and hydrothermal methods. This material exhibited two two-phase plateau regions on cycling in a half cell versus sodium but displayed solid-solution behaviour when cycled versus lithium, where the average potential was 3.3 V. On successive cycling versus Li a decrease in the sodium content of the active material was observed, which implied an ion-exchange reaction occurred between the material and the lithium electrolyte. Studies of polyanionic materials as positive electrode materials in alkali metal-ion batteries show that some of these materials, namely those which contain iron, hold the most promise in replacing battery technologies currently available.
5

Synthesis, Characterization And Investigation Of Thermoluinescence Properties Of Strontium Pyrophosphate Doped With Metals

Ilkay, Levent Sait 01 September 2009 (has links) (PDF)
Strontium pyrophosphate is a promising phosphate that is used widely in the industry as a result of its luminescent, fluorescent, dielectric, semi-conductor, catalyst, magnetic and ion exchange properties. Thermoluminescent dosimetry (TLD) is one of such areas. Recent researches in METU on thermoluminescence property of strontium pyrophosphate showed that strontium pyrophosphate could give enough intensity for radiation dosimetry when doped with oxides of some rare-earth elements. In this study strontium pyrophosphate was synthesized and the product was doped with copper-silver, copper-indium and manganese-praseodymium ions by solid-state reaction. In addition to these processes, characterization and the investigation of thermoluminescence properties of strontium pyrophosphate with and without dopants was conducted. Stoichiometric quantities of strontium carbonate and ammonium dihydrogen phosphate were weighed, mixed and ground by agate mortar. Afterwards, the mixture was heated at 900&amp / #730 / C for 14.5 hours. For doping process, synthesized strontium pyrophosphate and different amounts of copper oxide, indium oxide, silver nitrate, manganese oxide and praseodymium oxide were weighed and powdered together. Then, mixture was heated at 950&amp / #730 / C for 11 hours. For characterization of strontium pyrophosphate samples with and without dopants / X-ray Diffraction (XRD) was implemented. Fourier Transform Infrared Spectroscopy (FTIR) was used to determine whether the bond structures were affected from doping or not. Thermal properties of the samples were investigated with the help of Differential Thermal Analysis (DTA). Morphology of compounds was observed by Scanning Electron Microscope (SEM). Afterwards thermoluminescence (TLD) studies were carried out. XRD pattern of samples showed that the intensity of hkl-310 peak of strontium pyrophosphate increased with the inclusion of metal oxides, however none of the characteristic peaks of metal oxides was observed. Addition of metal oxides caused no change in FTIR meaning that the anionic part of matrix compound, which is strontium pyrophosphate, has structural stability. Thermal analysis and morphological investigation of this material were performed. TLD results were different for each sample, which has different content. The most significant peak, which is suitable for radiation dosimetry was observed at 160&amp / #730 / C in the glow curve with the sample doped with 7% manganese oxide and 1% praseodymium oxide.
6

Synthesis, Electrochemistry and Solid-Solution Behaviour of Energy Storage Materials Based on Natural Minerals

Ellis, Brian January 2013 (has links)
Polyanionic compounds have been heavily investigated as possible electrode materials in lithium- and sodium-ion batteries. Chief among these is lithium iron phosphate (LiFePO4) which adopts the olivine structure and has a potential of 3.5 V vs. Li/Li+. Many aspects of ion transport, solid-solution behaviour and their relation to particle size in olivine systems are not entirely understood. Morphology, unit cell parameters, purity and electrochemical performance of prepared LiFePO4 powders were greatly affected by the synthetic conditions. Partially delithiated olivines were heated and studied by Mössbauer spectroscopy and solid-solution behaviour by electron delocalization was observed. The onset of this phenomenon was around 470-500 K in bulk material but in nanocrystalline powders, the onset of a solid solution was observed around 420 K. The isostructural manganese member of this family (LiMnPO4) was also prepared hydrothermally. Owing to the thermal instability of MnPO4, partially delithiated LiMnPO4 did not display any solid-solution behaviour. Phosphates based on the tavorite (LiFePO4OH) structure include LiVPO4F and LiFePO4(OH)1-xFx which may be prepared hydrothermally or by solid state routes. LiVPO4F is a high capacity (2 electrons/transition metal) electrode material and the structures of the fully reduced Li2VPO4F and fully oxidized VPO4F were ascertained. Owing to structural nuances, the potential of the iron tavorites are much lower than that of the olivines. The structure of Li2FePO4F was determined by a combined X-ray and neutron diffraction analysis. The electrochemical properties of very few phosphates based on sodium are known. A novel fluorophosphate, Na2FePO4F, was prepared by both solid state and hydrothermal methods. This material exhibited two two-phase plateau regions on cycling in a half cell versus sodium but displayed solid-solution behaviour when cycled versus lithium, where the average potential was 3.3 V. On successive cycling versus Li a decrease in the sodium content of the active material was observed, which implied an ion-exchange reaction occurred between the material and the lithium electrolyte. Studies of polyanionic materials as positive electrode materials in alkali metal-ion batteries show that some of these materials, namely those which contain iron, hold the most promise in replacing battery technologies currently available.
7

Experimental and Computational Investigations of Kinetically Stable Selenides Synthesized by the Modulated Elemental Reactants Method

Esters, Marco 10 April 2018 (has links)
The controlled and targeted synthesis of new solid materials is still a challenge difficult to overcome. Slow diffusion rates and long diffusion lengths require long reaction times and high synthesis temperatures, resulting in limited control over the reaction pathway. The Modulated Elemental Reactants (MER) method uses compositionally modulated precursors with atomically thin elemental layers that form amorphous alloys upon annealing while maintaining composition modulation. In this amorphous intermediate, nucleation, not diffusion, control the formation of the product, enabling kinetic control of the reaction, and the synthesis of new metastable compounds, heterostructures with designed nanoarchitecture, and thin films with a high degree of texturing. This dissertation uses experimental and computational methods to investigate compounds synthesized by the MER method. Firth, the MER method is used to synthesize ferromagnetic CuCr2Se4 films that show a large degree of crystallographic alignment and interesting magnetic properties such as temperature-dependent easy axes and negative magnetoresistivity. The second part investigates ferecrystals, rotationally disordered members of the misfit layer compounds family. The MER method’s ability to control the nanoarchitecture of the products is used to synthesize a new type of structural isomers, allowing for the synthesis of thousands of ternary compounds using the same elements. Experimental methods are also used to monitor the formation of ferecrystalline compounds using [(SnSe)1+δ][VSe2] as a model system. Despite the vast number of compounds available, however, explaining the properties and stability of ferecrystals is still in its infancy. In the last part of this dissertation, ab initio methods are employed to investigate the components in our ferecrystals. Specifically, isolated layers of VSe2 with its structural distortions due to a charge density wave, SnSe with its thickness-dependent structures, and BiSe with its flexible lattice and anti-phase boundaries are investigated to complement experimental results. Some properties, such as the structural distortion in VSe2 and the different stabilities of BiSe layers, can be explained very well using this simplified model, but others, such as the structure of SnSe layers, are not exclusively determined by their dimensionality, underlining the complex nature of the interactions in ferecrystals. This dissertation includes previously published and unpublished co-authored material.
8

ObtenÃÃo das cerÃmicas dielÃtricas BiTRWO6 (TR = Y, Gd ou Nd) por radiaÃÃo de micro-ondas e sua aplicaÃÃo em dispositivos eletrÃnicos / Obtaining Of Ceramic Dielectric BiTRWO6 (Tr = Y, Gd Or Nd) By Microwave Radiation And Its Application In Electronic Devices

Gilvan NÃbrega da Rocha 20 August 2012 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / O aquecimento de uma mistura de Ãxidos metÃlicos pode promover a formaÃÃo de materiais cerÃmicos que, dependendo de suas propriedades dielÃtricas e de sua estrutura cristalina, podem ser utilizados para fabricaÃÃo de componentes eletrÃnicos de funÃÃes variadas. Este trabalho tem por objetivo a utilizaÃÃo de um forno de micro-ondas comercial, modificado para realizaÃÃo de reaÃÃes no estado sÃlido, no intuito de promover a reaÃÃo entre os Ãxidos de bismuto e tungstÃnio com Ãxidos de terras raras. Os Ãxidos de gadolÃnio, Ãtrio e neodÃmio, foram selecionados para o experimento, onde os materiais obtidos foram as cerÃmicas dielÃtricas BiGdWO6, BiYWO6 e BiNdWO6. A comprovaÃÃo da obtenÃÃo das fases cerÃmicas e o estudo estrutural das mesmas foram realizados por meio de difraÃÃo de raios-X (DRX) e espectroscopia no infravermelho e Raman. Foram tambÃm realizados os estudos das propriedades elÃtricas com o intuito de avaliar a aplicabilidade do material como dispositivo eletrÃnico. Os testes para aplicaÃÃo dos materiais como componentes eletrÃnicos na regiÃo das micro-ondas sugeriram, apÃs as anÃlises das medidas dielÃtricas, sua utilizaÃÃo como antenas de Microfita e monopolo. As propriedades dielÃtricas (permissividade e perda) das amostras apresentaram valores atraentes para aplicaÃÃes em capacitores e, certamente, para dispositivos microeletrÃnicos, de micro-ondas (antena para telefones celulares, por exemplo). / The mixture heat of the metal oxides may promote the formation of ceramic materials, depending on their dielectric properties and its crystalline structure may be used with electronic components for a variety of functions in electrical circuits. Heating method is directly related to the material properties. This work aims to use a commercial microwave oven modified to carry out reactions in the solid state, in order to promote the reaction between oxides of bismuth and tungsten with oxides of rare earths. The oxides of gadolinium, yttrium and neodymium were selected for the experiment, where the materials were BiGdWO6 dielectric ceramics, and BiYWO6 BiNdWO6. The proof of obtaining the phase ceramics and structural study of these were performed by means of X-ray diffraction (XRD) and infrared and Raman spectroscopy. It was also studied the electrical properties in order to evaluate the applicability of the material as electronic apparatus. Tests of materials for application as electronic components in the microwave region suggested, after the analysis of dielectric measurements, its use as microstrip and monopole antennas. The dielectric properties (permittivity and loss) of the samples proved to be attractive for capacitor applications and certainly for microelectronics devices, microwave (antenna for mobile phones, for example).
9

Fast, facile and solvent‐free dry melt synthesis of oxovanadium(IV) complexes: Simple design with high potency towards cancerous cells

Zegke, Markus, Spencer, Hannah L.M., Lord, Rianne M. 06 August 2019 (has links)
Yes / A range of oxobis(phenyl‐1,3‐butanedione) vanadium(IV) complexes have been successfully synthesized from cheap starting materials and a simple and solvent‐free one‐pot dry‐melt reaction. This direct, straightforward, fast and alternative approach to inorganic synthesis has the potential for a wide range of applications. Analytical studies confirm their successful synthesis, purity and solid‐state coordination, and we report the complexes’ uses as potential drug candidates for the treatment of cancer. After a 24‐hour incubation of A549 lung carcinoma cells with the compounds, they reveal cytotoxicity values 11‐fold greater than cisplatin, and remain non‐toxic towards normal cell types. Additionally, the complexes are stable over a range of physiological pH values and show the potential for interactions with BSA. / University of Bradford. Grant Number: Internal Research Development Fund
10

Synthesis And Characterization Of Lithium Triborate By Different Synthesis Methods And Their Thermoluminescent Properties

Depci, Tolga 01 May 2009 (has links) (PDF)
Lithium triborate, (LiB3O5), is a technologically important material for diverse applications, such as nonlinear optical materials and surface acoustic wave devices or, etc. Furthermore, it is suggested as an efficient thermoluminescent material. LiB3O5, suitable to dosimetric usage, was produced by different synthesis methods which were high temperature solid state reaction, microwave solid state reaction, microwave assisted high temperature solid state reaction and precipitation assisted high temperature solid state reaction. After the synthesis, metal oxides were doped into LiB3O5 to enhance its thermoluminescent properties. Identification and characteristics of LiB3O5 were determined by X-ray diffraction (XRD), Fourier Transform Infra red (FTIR) analyses, Differential Thermal Analyses (DTA), Scanning Electron Microscopy (SEM) and Particle Size Analyzer. The glow curves were obtained by using thermoluminescent (TL) reader. Among four different synthesis methods applied, high temperature solid state method needs very high temperatures and long duration of heating. Therefore, the effect of the reaction temperature, the time intervals, and also starting materials on production of LiB3O5 were investigated. Characterization studies indicated that LiB3O5 could be produced at 710 &deg / C for 4 hours. Among the starting materials used, Li2CO3 and H3BO3 combination was found the most suitable for the synthesis of LiB3O5 considering phase impurity as well as cost. LiB3O5 synthesized by microwave energy was unsuccessful. However, LiB3O5 could be synthesized by microwave assisted synthesis method by adding distilled water, urea and sucrose separately as thermal auxiliaries in microwave pre-heating step. The use of microwave and conventional ovens subsequently shortened the duration of heating. The crystallinity of LiB3O5 was the best in 40 % sucrose addition to initial mixture. The best method for synthesis of LiB3O5 has been found as precipitation assisted high temperature solid state method. This method yields LiB3O5 with higher phase purity as compared to these produced by other methods applied in this thesis and reported in the literature. It seems to be rather attractive since it is simple and needs less energy. Rare earth metal oxides, CuO and Al2O3 were added to LiB3O5 as activators to improve its TL properties. LiB3O5 synthesized by precipitation assisted high temperature solid state reaction and doped by 5 % wt Al2O3 showed the best TL property. Its main dosimetric characteristics revealed that LiB3O5 seemed to be suitable to medical and radiotherapy applications, since it was non-toxic, tissue equivalent, and chemically inert to body fluids.

Page generated in 0.1249 seconds