Spelling suggestions: "subject:"solid:liquid"" "subject:"solidliquid""
61 |
Macroscopic model for apparent protein adsorption equillibrium at hydrophobic solid-water interfacesAl-Malah, Kamal Issa Masoud 17 June 1993 (has links)
Graduation date: 1994
|
62 |
Thermodynamics and Kinetics of Phase Transitions during Supercooling and Superheating: A Theoretical and Computational Investigation in Model Lennard-Jones SystemsBai, Xianming 13 November 2006 (has links)
In the work presented in this dissertation, extensive molecular dynamics (MD) simulations have been performed to investigate various physical problems related to the solid-liquid transitions over a wide range of supercooling and superheating temperatures in model Lennard-Jones systems. The major focus of this work is to investigate the thermodynamics, kinetics, and underlying mechanisms of these problems. There are five topics in this work: (1) The classical nucleation theory (CNT) was tested for both liquid supercooling and solid superheating via different solid-liquid coexistence models. It is found that the CNT is valid for liquid supercooling but invalid for solid superheating. The arising elastic energy plays a significant role in affecting the liquid nucleation in a superheated solid. A new nucleation theory was proposed for describing the internal liquid nucleation of solid superheating. (2) Based on CNT, a new and accurate method was developed for calculating the crystal-melt interfacial free energy and its anisotropy. Our result is very close to Turnbulls experimental results. (3) The face, temperature, and size dependences of the crystallization rate were investigated in this work. The results show that the crystallization rate decreases substantially with the increasing system size. Different from the conventional models, a new model is developed to describe these dependences. (4) Melting from internal nanovoids was investigated in this work. It is found that the mechanism of void melting is quite different from bulk melting and nanoparticle melting. There are four different stages and three local melting temperatures in void melting. The mechanism of the complex melting sequence is systematically explained. (5) The homogenous melting at the upper limit of superheating was investigated in this work. For the first time, the ring diffusion is found to take place in superheated crystals and causes the spontaneous melting. The prevailing instability theories are unsuitable to describe this type of melting. The mechanism of the diffusion-loop mediated melting is carefully discussed in this work.
|
63 |
Molecular Dynamics Simulations of Heat Transfer In Nanoscale Liquid FilmsKim, Bo Hung 2009 May 1900 (has links)
Molecular Dynamics (MD) simulations of nano-scale flows typically utilize fixed
lattice crystal interactions between the fluid and stationary wall molecules. This
approach cannot properly model thermal interactions at the wall-fluid interface. In order
to properly simulate the flow and heat transfer in nano-scale channels, an interactive
thermal wall model is developed. Using this model, the Fourier’s law of heat conduction
is verified in a 3.24 nm height channel, where linear temperature profiles with constant
thermal conductivity is obtained. The thermal conductivity is verified using the
predictions of Green-Kubo theory. MD simulations at different wall wettability ( εωf /ε )
and crystal bonding stiffness values (K) have shown temperature jumps at the
liquid/solid interface, corresponding to the well known Kapitza resistance. Using
systematic studies, the thermal resistance length at the interface is characterized as a
function of the surface wettability, thermal oscillation frequency, wall temperature and
thermal gradient. An empirical model for the thermal resistance length, which could be
used as the jump-coefficient of a Navier boundary condition, is developed. Temperature distributions in the nano-channels are predicted using analytical solution of the
continuum heat conduction equation subjected to the new temperature jump condition,
and validated using the MD results. Momentum and heat transfer in shear driven nanochannel
flows are also investigated. Work done by the viscous stresses heats the fluid,
which is dissipated through the channel walls, maintained at isothermal conditions.
Spatial variations in the fluid density, kinematic viscosity, shear- and energy dissipation
rates are presented. The energy dissipation rate is almost a constant for εωf /ε < 0.6,
which results in parabolic temperature profiles in the domain with temperature jumps
due to the Kapitza resistance at the liquid/solid interfaces. Using the energy dissipation
rates predicted by MD simulations and the continuum energy equation subjected to the
temperature jump boundary conditions developed in this study, the analytical solutions
are obtained for the temperature profiles, which agree well with the MD results.
|
64 |
Screened electrostatic interaction of charged colloidal particles in nonpolar liquidsEspinosa, Carlos Esteban 18 May 2010 (has links)
Liquid dispersions of colloidal particles play a big role in nature and as industrial products or intermediates. Their material properties are largely determined by the liquid-mediated particle-particle interaction.
In water-based systems, electric charge is ubiquitous and electrostatic particle interaction often is the primary factor in stabilizing dispersions against decomposition by aggregation and sedimentation. Very nonpolar liquids, by contrast, are usually considered free of charge, because their low dielectric constant raises the electrostatic cost of separating opposite charges above the available thermal energy. Defying this conventional wisdom, nonpolar solutions of certain ionic surfactants do support mobile ions and surface charges. Even some nonionic surfactants have recently been found to raise the conductivity of nonpolar oils and promote surface charging of suspended particles, but this counter-intuitive behavior is not yet widely acknowledged, nor is the mechanism of charging understood.
The present study provides the first characterization of the electrostatic particle interaction caused by nonionizable surfactants in nonpolar oils. The methods used in this study are video microscopy experiments where particle positions of equilibrium ensembles are obtained and translated into particle interactions.
Experimentally, equilibrium particle positions are monitored by digital video microscopy, and subjected to liquid structure analysis in order to find the energy of interaction between two particles. The observed interaction energy profiles agree well with a screened-Coulomb potential, thus confirming the presence of both surface charge and mobile ions in solution. In contrast to recently reported electrostatic particle interactions induced by ionic surfactants in nonpolar solution, the present study finds evidence of charge screening both above and below the surfactant's critical micelle concentration, CMC. Fitted Debye screening lengths are much larger than in aqueous systems, but similar to the Debye length in nonpolar oils reported for micellar solutions of ionic surfactants cite{hsu_charge_2005}.
Radial distribution functions obtained from experiments are compared to Monte-Carlo simulations with input potentials obtained from a fit to the interaction measurement. The measured electrostatic forces and fitted surface potentials are fairly substantial and easily capable of stabilizing colloidal dispersions. Although few in number, surface charges formed on polymer particle surfaces submerged in nonpolar solutions of nonionizable surfactants create surface potentials comparable to those in aqueous systems.
|
65 |
Scanning electrochemical microscope (SECM) study of charge transfer through solid/liquid interfaces, liquid/liquid interfaces, and bilayer lipid membranes /Zhou, Junfeng, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references. Available also in a digital version from Dissertation Abstracts.
|
66 |
Design of conical centrifugal filters : an analytical approachBizard, Arnaud François Marie January 2011 (has links)
No description available.
|
67 |
Spectroscopic Investigation Of Model Silica-Solvent Interfaces Relevant To Chromatographic SeparationsMacech, Piotr January 2009 (has links)
A novel strategy to investigate interfaces relevant to chromatographic separations is presented. The strategy in this dissertation relies on three key ideas: 1) design and fabrication of appropriate model of chromatographic interface, 2) use of forced dewetting to separate interfacial constituent of mobile phase from its bulk component yet preserves the interface, and 3) use of IR spectroscopy and ellipsometry to investigate the structure and thickness of isolated interface.Stratified structures of ultrathin (< 10 nm thick) silica films on gold using gold oxide as adhesive layer and wetting control agent are used as model solid phase. Such design provides chemical environment of bulk silica surface, does not introduce significant spectral background, is suitable for reflection-based spectroscopies, and allow for easy modification to mimic wide range of silica - solvent interfaces. Bare silica-water models capillary electrophoresis interfaces; water-methanol mixture at octadecylsilane-modified silica represents reversed phase liquid chromatography interfaces.Forced dewetting is used to decouple interfacial constituent of mobile phase from its bulk component; yet, the integrity of interface is preserved. This approach, combined with the use of IR spectroscopy and ellipsometry, allowed for ambient atmosphere characterization of these interfacial layers in terms of their structure, composition, and thickness for water at bare silica. Hydrogen bonding was probed in case of complex water-methanol binary mixture at octadecylsilane-modified silica surface.The analysis of residual water layers formed by forced dewetting at bare silica as a function of bulk solution pH shows that the structure of the interfacial layer is highly ordered compared to bulk, and is also pH dependent. Further, thicknesses of interfacial layers were found to be pH dependent and vary from ~6 (pH 1) to ~9 nm (pH 9). Gouy-Chapman-Stern double layer was found to be inadequate to satisfactorily describe observed trends. In addition, surface enhanced infrared absorbance phenomenon was also observed that aided increased quality of resulting IR spectra.The analysis of residual water-methanol layers formed by forced dewetting at octadecylsilane-modified silica surface as a function of gas phase atmosphere shows that the structure of the interfacial layer is highly dependent on the composition of gas phase. The observed changes indicate that condensation of methanol from gas phase into residual layer and/or evaporation of water from residual layer into gas phase may occur in used experimental setup used in this dissertation. For that reason, more precise quantification of relative amounts of water and methanol in residual layers was precluded. Yet, regardless of investigational conditions, two different hydrogen bonding environments for methanol were distinctively observed.
|
68 |
ULTRASONICALLY ENHANCED MASS TRANSPORT AND DEGRADATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN SOLID-LIQUID TWO PHASE PARTITIONING SYSTEMSIsaza, Pedro Alejandro 04 September 2009 (has links)
The remediation of soil contaminated with polycyclic aromatic hydrocarbons (PAHs) is endorsed by environmental protection agencies worldwide. Recent studies demonstrated the removal of these contaminants from soil utilizing polymer beads, with subsequent PAH release and degradation in solid-liquid two phase partitioning bioreactors (TPPBs). Although such a process was successful, significant mass transport limitations involving PAH release from the polymers hampered productivity. The current work examined the possibility of applying sonication in solid-liquid partitioning systems to enhance delivery and degradation of PAHs.
Small scale physical testing revealed delivery rates of PAHs from Desmopan, increased by 5 fold under intermittent sonication relative to non-sonicated conditions. Enhancements were also displayed as shifts to higher release equilibria under sonicated conditions, agreeing with sonochemistry concepts. Improvements were demonstrated across a range of polymers, suggesting that sonication could enhance PAH release with any polymers deemed feasible for environmental applications. A PAH-degrading microbial consortium was enriched, and it was demonstrated that sonication also improved the rate of phenanthrene degradation delivered from Desmopan by four times, confirming transport improvements while minimizing cellular inactivation effects.
A mass transport analysis showed that without sonication, delivery of PAHs was restricted by the external resistance at the solid-liquid interface. Ultrasound was shown to enhance both external and internal transport properties, allowing rates not achievable through increased liquid mixing. Diffusivities quantified with and without ultrasound decreased as a function of permeant molecular size. Additionally, partitioning coefficients under sonicated and non-sonicated conditions decreased with PAH molecular size. Finally, an examination of permeant property data demonstrated that polarizability was the best descriptor of thermodynamic and transport behaviour in solid-liquid systems.
The possibility of inducing equivalent improvements was investigated in a bench scale TPPB, in which sonic exposure improved degradation rates of phenanthrene by 2.7 fold when delivered from Desmopan. A window of on/off operation for ultrasonic cycling was also demonstrated, providing potential for optimizing sonication via rational selection of exposure times. DNA analysis also revealed that the consortium composition was maintained in the presence of sonication and also demonstrated that the consortium was comprised of bacteria belonging to the Pandoraea, Sphingobium, and Pseudoxanthomonas genera. / Thesis (Master, Chemical Engineering) -- Queen's University, 2009-08-26 13:04:26.229
|
69 |
The Bioproduction of L-phenylacetylcarbinol in solid-liquid two phase partitioning bioreactorsKHAN, Tanya Razia 26 August 2010 (has links)
Biphasic systems such as two-phase partitioning bioreactors (TPPBs) have been used to alleviate biological inhibition by sequestering inhibitory compounds within an immiscible phase. The use of solid polymer beads as this auxiliary phase provides a fully biocompatible alternative to commonly used yet potentially toxic organic solvents. This work focused on the application of solid-liquid TPPBs to the bioproduction of the pharmaceutical precursor L-phenylacetylcarbinol (PAC), a biotransformation which suffers from substrate (benzaldehyde), product (PAC), and by-product (benzyl alcohol) inhibition, and simple strategies to improve TPPB performance in general.
A wide range of commercially available, biocompatible, and non-bioavailable polymers were screened for their affinity for benzaldehyde, PAC, and benzyl alcohol. Hytrel G3548L demonstrated the highest affinity for all three target compounds and was subsequently used in solid-liquid TPPBs for PAC production. Using 15% v/v polymer beads, PAC concentration was increased by 104% and benzyl alcohol concentration decreased by 38% over the single phase control. The delivery of benzaldehyde from polymer beads demonstrated only a 6-8% reduction in mass productivity with improved operational simplicity and reduced operator intervention.
The final objective of this work was to independently investigate various aspects of the aqueous phase composition and determine how each factor affects the partition coefficient of benzaldehyde in Hytrel G3548L. Temperature and pH were observed to have no significant effect on partitioning. Salt and glucose additions increased the partition coefficient by 173% and 30% respectively compared to RO water, while ethanol was found to decrease the partition coefficient from 44 (±1.6) to 1 (±0.3). These findings may be applied to solid-liquid TPPBs to increase or decrease partitioning as required, leading to improved bioreactor performance.
This work has successfully shown that with careful polymer selection, solid-liquid TPPBs can be used to increase the productivity of a biotransformation without the associated biocompatibility problems that have sometimes been observed with organic solvents. The delivery of inhibitory substrate from the polymer phase was successfully accomplished, which is a novel demonstration in the field of solid-liquid TPPBs for biocatalysis. Finally this work contributes a range of simple strategies to improve the partitioning behavior of solid-liquid TPPBs using the aqueous phase composition. / Thesis (Master, Chemical Engineering) -- Queen's University, 2010-08-26 10:53:38.569
|
70 |
Adhesion and friction forces of colloidal particles in atmospheric systemsKweon, Hyo Jin Jin 11 January 2013 (has links)
Interactions of colloidal particles with surfaces occur in natural and engineered systems, and they influence the transport of contaminants through diffusion, aggregation, filtration, and sedimentation. To quantify the transport and fate of colloidal particles and their influence on environmental systems, it is important to understand their interactions with surfaces. These interactions are influenced by physical and chemical surface properties such as hydrophobicity, charge density, and roughness, as well as environmental conditions such as relative humidity (RH). In atmospheric systems, RH induces the capillary force and also influences the contributions of van der Waals and electrostatic forces. To investigate the role of surface properties and RH in the interaction of colloidal particles with surfaces, atomic force microscopy was employed to measure the adhesion and friction forces of colloidal particles including Bacillus thuringiensis spores, silica, and gold at various experimental conditions with several types of surfaces including mica, silica, and radioactive gold. Contributions to the adhesion force by van der Waals, capillary, and electrostatic forces were theoretically calculated and compared to measured forces. Through experimental results and theoretical studies, it was identified how surface properties of interacting surfaces and experimental conditions influence the interfacial interactions of colloidal particles in atmospheric systems. The role of RH in adhesion and friction depends on the hydrophobicity or contact angles of interacting surfaces and surface roughness. Relative humidity also influences the contribution of electrostatic force to the total adhesion force by screening the strength of surface potential or providing a passage for charge leakage. The results of this thesis provide a better understanding of particulate processes that are influenced by the interactions of colloidal particles with surfaces and can be useful in monitoring and control of contamination in atmospheric systems.
|
Page generated in 0.0341 seconds