Spelling suggestions: "subject:"solidphase orientation"" "subject:"solidphase orientation""
1 |
Improved dielectric performance of polypropylene/multiwalled carbon nanotube nanocomposites by solid-phase orientationLin, X., Tian, J.-W., Hu, P.-H., Ambardekar, Rohan, Thompson, Glen P., Dang, Z.-M., Coates, Philip D. 26 September 2015 (has links)
Yes / By means of die drawing technique at rubber-state, effect of the orientation of
microstructure on dielectric properties of polypropylene/multi-walled carbon nanotubes
nanocomposites (PP/MWCNTs) was emphasized in this work. Viscoelasticity behavior of
PP/MWCNTs with MWCNTs weight loadings from 0.25 to 5 wt% and dielectric performance of the
stretched PP/MWCNTs under different drawing speeds and drawing ratios were studied for seeking
an insight of the influences of dispersion and orientation state of MWCNTs and matrix molecular
chains. A viscosity decrease (ca. 30%) of the PP/MWCNTs-0.25wt% melt was obviously observed
owing to the free volume effect. Differential scanning calorimetry (DSC) and wide angle X-ray
diffraction (WAXD) were adopted to detect the orientation structure and the variation of crystal
morphology of PP/MWCNTs. Melting plateau regions, which indicated the mixed crystallization
morphology for the stretched samples, were found in the DSC patterns instead of a single-peak for
the unstretched samples. It was found that the uniaxial stretching process broke the conductive MWCNTs networks and consequently increased the orientation of MWCNTs as well as molecular
chains along the tensile force direction, leading to an improvement of the dielectric performance.
|
2 |
Enhanced dielectric properties of immiscible poly (vinylidene fluoride)/low density polyethylene blends by inducing multilayered and orientated structuresLin, X., Fan, L., Ren, D., Jiao, Z., Yang, W., Coates, Philip D. 03 February 2017 (has links)
Yes / In order to improve the frequency-dependent dielectric properties of the immiscible polymeric blends
which were melt-compounded by composing poly (vinylidene fluoride) (PVDF) and low density
polyethylene (LDPE), the layer multiplication and the solid phase orientation technologies were
respectively adopted as two effective strategies to optimize the dispersion state and the orientation of
internal microstructure, aiming at reducing physical porosity and improving the barrier performance
as well as crystal phase of the polymer extrudates. Results comparison showed the dielectric
properties were greatly dependent on the crystal type and the physical porosity density which were
also emphasized as the interfacial effect in the previous work [ref. 29: Lin X et al, J Appl Polym Sci
2015; 132(36), 42507]. It was found that the multilayer-structure manipulation could substantially
improve the dispersion state between the two immiscible components, enhance the mechanical
performance and reduce the internal defects and increase the dielectric constant while keeping the
dielectric loss stable. By uniaxial stretching the sample sheets at a rubber state temperature of ca.
10-20˚C below the melting point, crystal transformation was induced by increasing molecular chains
orientation degree which was also contributed to the enhancement of the dielectric properties. These
techniques implied the potential as a promising way for inducing functional structures of polymeric
blends.
|
3 |
Highly improved PP/CNTs sheet prepared by tailoring crystallization morphology through solid-phase die drawing and multilayer hot compressionLin, X., Spencer, Paul, Gong, M., Coates, Philip D. 12 November 2020 (has links)
No / Simply melt blended polypropylene/carbon nanotubes composites (PP/CNTs) usually present mechanical deterioration. In this work, multilayered sheet of PP/CNTs with improved tensile property was obtained by solid-phase orientation and hot compression. The initially blended PP/CNTs were highly orientated by employing a constrained slit die and hot compressed under a certain temperature and pressure by stacking eight layers together. The effects of compression temperature and pressure on the tensile property and AC conductivity of the multilayered sheets were examined to explore the evolution of hierarchical crystallization morphology and CNT networks. The multilayered sheet which was hot compressed at 184°C and 5 MPa demonstrated an optimum tensile strength of ∼132.5 MPa and an elongation at break ∼52.7%, respectively, raised by almost 3-fold compared with those initially blended PP/CNTs. By increasing compression temperature and decreasing pressure, the AC conductivity showed an increase of 2 to 4 orders of magnitude. / China Scholarship Council. Grant Number: 201806465028.
|
4 |
An investigation of oriented polymers for power transmission applicationsVgenopoulos, Dimitrios January 2012 (has links)
The feasibility of using oriented polymer technology in the design and manufacture of mechanical power transmission belts has been investigated. Working from an initial selection of polymers a die-drawing technique for orienting the polymers was devised, and the static and dynamic mechanical properties of the oriented polymers were investigated. These results indicated that PP, PBT, PPS and PEEK were suitable for further research. Of these 4 materials PBT was selected as the most appropriate material for belt manufacture based on cost, processability (drawing temperature, natural draw ratio) and limitations of laboratory equipment. A technique based on free-tensile drawing combined with simultaneous rotational motion was designed and used to manufacture oriented PBT flat belts from cylindrical injection moulded preforms. The technique used a tensile machine with two pulley-clamps, a fitted heated chamber and an electric motor to provide rotational motion to the belt during drawing. Two types of oriented PBT flat belts with different cross sections were produced successfully, termed 'thick' and 'thin'. These belts were tested on a purpose-built rig comprising two equal diameter pulleys, one driven by an electric motor and the other connected to a generator to provide load. The belt life and power transmission performance was investigated at various conditions of speed, transmitted torque and tension, and the results indicated that despite their smaller cross section 'thin' flat belts demonstrated up to 3 times longer life. However life was only 100hours, which was very low compared with conventional flat belts that last for many thousands of hours at higher speeds and much greater power transmission capacity. Synchronous belts were then produced through the same manufacturing method used for flat belts. This aspect of the research concentrated on the initial pitch design and size, i.e. the timing. Initially a rectangular tooth profile was selected for its simplicity in terms of manufacture. The produced belts exhibited high pitch length variation as well as deformed teeth and were not usable for synchronous power transmission. An extra timing feature was included to control orientation; reducing the pitch length variation enabling consistent tooth production. It was observed that the areas between the extra timing feature and the tooth edges did not orient completely with some regions remaining undrawn. Finite Element Analysis (FEA) was used to predict the drawing behaviour of different shapes and dimensions of the timing features. The results suggested that a 4mm wide and 7mm long slot provided the highest possible extension and the minimum non-oriented regions on the groove. Whilst, the thickness and width of the drawn belt timing features showed differences to the FEA predictions, manufactured synchronous belts based on that design had much better controlled dimensions and the lowest achieved pitch length variation ( ±1%), compared to initial attempts. It is concluded that oriented polymers have the potential to be used in power transmission belts since they offer higher stiffness, tensile strength and creep resistance compared with isotropic polymers that are currently used in commercially available belts such as thermoplastic polyurethane (TPU) and polyvinyl chloride (PVC). The main disadvantages were the lack of dimensional stability and number of cycle to failure.
|
5 |
An investigation of oriented polymers for power transmission applicationsVgenopoulos, Dimitrios January 2012 (has links)
The feasibility of using oriented polymer technology in the design and manufacture of mechanical power transmission belts has been investigated. Working from an initial selection of polymers a die-drawing technique for orienting the polymers was devised, and the static and dynamic mechanical properties of the oriented polymers were investigated. These results indicated that PP, PBT, PPS and PEEK were suitable for further research. Of these 4 materials PBT was selected as the most appropriate material for belt manufacture based on cost, processability (drawing temperature, natural draw ratio) and limitations of laboratory equipment.
A technique based on free-tensile drawing combined with simultaneous rotational motion was designed and used to manufacture oriented PBT flat belts from cylindrical injection moulded preforms. The technique used a tensile machine with two pulley-clamps, a fitted heated chamber and an electric motor to provide rotational motion to the belt during drawing. Two types of oriented PBT flat belts with different cross sections were produced successfully, termed 'thick' and 'thin'.
These belts were tested on a purpose-built rig comprising two equal diameter pulleys, one driven by an electric motor and the other connected to a generator to provide load. The belt life and power transmission performance was investigated at various conditions of speed, transmitted torque and tension, and the results indicated that despite their smaller cross section 'thin' flat belts demonstrated up to 3 times longer life. However life was only 100 hours, which was very low compared with conventional flat belts that last for many thousands of hours at higher speeds and much greater power transmission capacity.
Synchronous belts were then produced through the same manufacturing method used for flat belts. This aspect of the research concentrated on the initial pitch design and size, i. e. the timing. Initially a rectangular tooth profile was selected for its simplicity in terms of manufacture. The produced belts exhibited high pitch length variation as well as deformed teeth and were not usable for synchronous power transmission. An extra timing feature was included to control orientation; reducing the pitch length variation enabling consistent tooth production. It was observed that the areas between the extra timing feature and the tooth edges did not orient completely with some regions remaining undrawn.
Finite Element Analysis (FEA) was used to predict the drawing behaviour of different shapes and dimensions of the timing features. The results suggested that a 4mm wide and 7mm long slot provided the highest possible extension and the minimum non-oriented regions on the groove. Whilst, the thickness and width of the drawn belt timing features showed differences to the FEA predictions, manufactured synchronous belts based on that design had much better controlled dimensions and the lowest achieved pitch length variation ( ±1%), compared to initial attempts.
It is concluded that oriented polymers have the potential to be used in power transmission belts since they offer higher stiffness, tensile strength and creep resistance compared with isotropic polymers that are currently used in commercially available belts such as thermoplastic polyurethane (TPU) and polyvinyl chloride (PVC). The main disadvantages were the lack of dimensional stability and number of cycle to failure. / Polymer IRC; The University of Bradford; The Gates Corporation
|
Page generated in 0.1308 seconds