• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cohomology Jumping Loci and the Relative Malcev Completion

Narkawicz, Anthony Joseph 12 December 2007 (has links)
Two standard invariants used to study the fundamental group of the complement X of a hyperplane arrangement are the Malcev completion of its fundamental group G and the cohomology groups of X with coefficients in rank one local systems. In this thesis, we develop a tool that unifies these two approaches. This tool is the Malcev completion S_p of G relative to a homomorphism p from G into (C^*)^N. The relative completion S_p is a prosolvable group that generalizes the classical Malcev completion; when p is the trivial representation, S_p is the Malcev completion of G. The group S_p is tightly controlled by the cohomology groups H^1(X,L_{p^k}) with coefficients in the irreducible local systems L_{p^k} associated to the representation p.The pronilpotent Lie algebra u_p of the prounipotent radical U_p of S_p has been described by Hain. If p is the trivial representation, then u_p is the holonomy Lie algebra, which is well-known to be quadratically presented. In contrast, we show that when X is the complement of the braid arrangement in complex two-space, there are infinitely many representations p from G into (C^*)^2 for which u_p is not quadratically presented.We show that if Y is a subtorus of the character torus T containing the trivial character, then S_p is combinatorially determined for general p in Y. We do not know whether S_p is always combinatorially determined. If S_p is combinatorially determined for all characters p of G, then the characteristic varieties of the arrangement X are combinatorially determined.When Y is an irreducible subvariety of T^N, we examine the behavior of S_p as p varies in Y. We define an affine group scheme S_Y over Y such that if Y = {p}, then S_Y is the relative Malcev completion S_p. For each p in Y, there is a canonical homomorphism of affine group schemes from S_p into the affine group scheme which is the restriction of S_Y to p. This is often an isomorphism. For example, if there exists p in Y whose image is Zariski dense in G_m^N, then this homomorphism is an isomorphism for general p in Y. / Dissertation
2

On graded ideals over the exterior algebra with applications to hyperplane arrangements

Thieu, Dinh Phong 23 September 2013 (has links)
Graded ideals over the polynomial ring are studied deeply with a huge of methods and results. Over the exterior algebra, there are not much known about the structures of minimal graded resolutions, Gröbner fans of graded ideals or the Koszul property of algebras defined by graded ideals. We study componentwise linearity, linear resolutions of graded ideals as well as universally, initially and strongly Koszul properties of graded algebras defined by a graded ideals over the exterior algebra. After that, we apply our results to Orlik-Solomon ideals of hyperplane arrangements and show in which way the exterior algebra is useful in the study of related combinatorial objects.
3

Module theory over the exterior algebra with applications to combinatorics

Kämpf, Gesa 17 May 2010 (has links)
Diese Arbeit entwickelt aufbauend auf bekannten Resultaten die Modultheorie über der äußeren Algebra in Teilen weiter, insbesondere werden die Tiefe eines Moduls und Moduln mit linearer injektiver Auflösung untersucht. Angewendet werden die Resultate auf die Orlik-Solomon Algebra eines Matroids.

Page generated in 0.0501 seconds