• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 38
  • 14
  • 10
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 231
  • 101
  • 37
  • 30
  • 28
  • 24
  • 22
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Application of time domain reflectometry in solute transport experiments

Yu, Chunming,1957- January 1998 (has links)
Contaminants can enter groundwater through the unsaturated zone as dissolved solutes. To predict the location and extent of these contaminants, transport parameters such as pore water velocity y and dispersion coefficient D are required. These parameters are often obtained through transport experiments. The goal of this study is to determine y and D using time domain reflectometry (TDR) technique. Using TDR for transport experiments under unsaturated conditions, we investigated the effects of volumetric water content θᵥ, distance of flow path, and draining-wetting history on D. TDR was used to measure θᵥ, and salt concentration in twenty-one unsaturated column experiments. The 105 cm-long column was homogeneously packed with silica sand (particle size: 53 to 425 pm). Ten TDR probes at ten depths were used to obtain in situ breakthrough curves and a chloride electrode was used to measure effluent breakthrough curves at the bottom of the column. A 35 mM NaC1 (sodium chloride) was used as the tracer with 20 mM NaC1 as background solution. We developed a three-parameter expression relating θᵥ, to measured dielectric constant Kₐ: θᵥ =aKₐᵅ + b. This calibration expression fits as closely or better than the "universal polynomial" and is also consistent with the well-known mixing model. For an isotropic soil with homogeneous water distribution, this expression is further simplified to two parameters by taking α = 0.5. The effects of temperature, porosity, soil solid and bound water can be taken into account by varying a and b of the two-parameter expression. TDR measurements have been shown to be sensitive to bound water and not particular sensitive to the other factors. To calculate y and D from breakthrough curves of step-input experiments, a new moment analysis method has been developed. The transport parameters obtained from this new method show a little difference from the parameters determined from the convection-dispersion equation using the CXTFIT model (a published computer program for estimating solute transport parameters from observed breakthrough curves). Our results demonstrated that D is dependent on measurement methods and concentrations of experimental solutions.
22

EVIDENCE FOR COMPARTMENTALIZATION OF AQUIFER SYSTEMS: SOLUTE AND ISOTOPE GEOCHEMISTRY OF GROUNDWATERS IN THE MIDDLE SAN PEDRO BASIN, ARIZONA

Adkins, Candice Breanna January 2009 (has links)
The Middle San Pedro Basin in southeastern Arizona is a typical alluvial basin in the semi-arid southwestern United States with a rapidly growing population that is dependent upon groundwater resources for water supply. This study investigated recharge areas, compartmentalization and potential mixing of water sources, and travel times of groundwater throughout the basin using variations in major ion chemistry (water type, Ca/Sr ratios, SO4/Cl ratios) and isotope ratios (18O, 2H, 3H, 34S, 13C, 14C) of groundwaters, surface waters and precipitation in conjunction with hydrogeologic data (e.g. hydraulic head and hydrostratigraphy). Recent recharge (<50 years) has occurred within mountain systems along the basin margins, and in shallow floodplain aquifers adjacent to the San Pedro River. Groundwaters in confined aquifers in the central basin were recharged at high elevation in the fractured bedrock and have been extensively modified by water-rock reactions over long timescales (up to 34,600 years). These results can be used to constrain physical assumptions of future groundwater flow models designed to help make improved water management decisions.
23

Three-Dimensional Measurement of Porosity and Solute-Concentration Distributions during Diffusion in Porous Geologic Media Using X-ray Micro-Computed Tomography

Agbogun, Henry Mosimabale 12 September 2011 (has links)
No description available.
24

SOLVENT-RESISTANT NANOFILTRATION MEMBRANES: SEPARATION STUDIES AND MODELING

Bhanushali, Dharmesh S. 01 January 2002 (has links)
The primary focus of the research is to extend the principles of Nanofiltration(NF) to non-aqueous systems using solvent-resistant NF membranes. Several differentlevels of interaction are introduced when organic solvents are used with polymericmembranes and thus quantification of polymer-solvent interactions is critical. Puresolvent permeation studies were conducted to understand the mechanism of solventtransport through polymeric membranes. Different membrane materials (hydrophilic andhydrophobic) as well as different solvents (polar and non-polar) were used for the study.For example, hexane flux at 13 bar through a hydrophobic silicone based NF membranewas ~ 0.6 x 10-4 cm3/cm2. s. and that through a hydrophilic aromatic polyamide based NFmembrane was ~ 6 x 10-4 cm3/cm2. s. A simple model based on a solution-diffusionapproach which uses solvent physical properties (molar volume, viscosity) andmembrane properties (surface energy, etc) is used for correlating the pure solventpermeation through hydrophobic polymeric membranes.Solute transport studies were performed using organic dyes and triglycerides inpolar and non-polar solvents. For example, the rejection of Sudan IV (384 MW organicdye) in n-hexane medium is about 25 % at 15 bar and that in methanol is about –10 % atabout 20 bar for a hydrophobic (PDMS-based) membrane. However, for a hydrophilicpolyamide based NF membrane, the direction of separation is reversed (86 % in methanoland 43 % in n-hexane). From our experimental data with two types of membranes it isclear that coupling of the solute and solvent fluxes cannot be neglected. Two traditionaltransport theories (Spiegler-Kedem and Surface Force-Pore Flow model) that considercoupling were evaluated with literature and our experimental solute permeation data. Amodel based on a fundamental chemical potential gradient approach has been proposedfor explaining solute separation. The model uses solute, solvent and membrane physicalproperties and uses the Flory-Huggins and UNIFAC theories as activity coefficientmodels. This model has been used to obtain a correlation for the diffusion coefficients ofsolutes in hexane through a hydrophobic membrane. This correlation along withconvective coupling can be used to predict separation behavior for different solutes and atdifferent temperatures.
25

Pharmacogenomics of solute carrier transporter genes in the Xhosa population

Jacobs, Clifford Winston January 2014 (has links)
Philosophiae Doctor - PhD / Solute carrier transporters belonging to the major facilitator family of membrane transporter are increasingly being recognized as a possible mechanism to explain inter-individual variation in drug efficacy and response. Genetic factors are estimated to be responsible for approximately 15-30% of inter-individual variation in drug disposition and response. The aims of this study were to determine the minor allele frequencies of 78 previously identified single nucleotide polymorphisms in the pharmacogenetically relevant SLC22A1-3 and SLC47A1 genes in the indigenous African population of South Africa. Secondly, to determine whether allele and genotype frequencies for these SNP were different from that reported for other African, Caucasian, and Asian populations. Thirdly, to infer haplotypes from the genetic information which can potentially be used in future to design and interpret results of pharmacogenetics association studies involving these genes and their substrate drugs. Finally, to determine whether the Xhosa population harbour novel SNPs in the SLC22A2 gene, that encodes the kidney-specific hOCT2. SNaPshot™ multiplex single base minisequencing systems were developed and optimized for each of SLC22A1, SLC22A2, SLC22A3, and SLC47A1 covering the previously identified 78 SNPs. These systems were then used to genotype the alleles of 148 healthy Xhosa subjects residing in Cape Town, South Africa. In addition, the proximal promoter region and all 11 exons and flanking regions of the SLC22A2 gene of 96 of the participants were screened for novel SNPs by direct sequencing. The Xhosa subjects investigated lacked heterozygosity and were monomorphic for 91% of the SNPs screened. None of the SLC22A3 and SLC47A1 SNPs investigated was observed in this study. Sequencing of the SLC22A2 gene revealed 28 SNPs, including seven novel polymorphic sites, in the 96 Xhosa subjects that were screened. The minor allele frequencies of the seven previously identified variant SNPs observed in this study were different compared to that observed for American and European Caucasian, and Asian populations. Moreover, the allele frequencies for these SNPs differed amongst African populations themselves. Eight and seven haplotypes were inferred for SLC22A1 and SLC22A2, respectively, for the Xhosa population from the information gathered with SNaPshot™ genotyping. This study highlights the fact that African populations do not have the same allele frequencies for SNPs in pharmacogenetically relevant genes. Furthermore, the Xhosa and other African populations do not share all reduced function variants of the SLC22A1-3 and SLC47A1 genes with Caucasian and Asian populations. Moreover, this study has demonstrated that the Xhosa population harbours novel and rare genetic polymorphisms in the key pharmacogene SLC22A2. This study lays the foundation for the design and interpretation of future pharmacogenetic association studies between the variant alleles of the SLC22A1-3 and SLC47A1 genes in the Xhosa population and drug disposition and efficacy.
26

Lattice Boltzmann Modeling of Fluid Flow and Solute Transport in Karst Aquifers

Anwar, Shadab 11 June 2008 (has links)
A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.
27

Interactions between Solute Atoms and Defects in Silicon and Germanium

Dorward, Ralph Clarence 10 1900 (has links)
<p> A thermodynamic investigation of interactions between solute atoms and defects (other solute atoms, electrons, phonons, and grain boundaries) has been conducted by solubility measurements of copper and gold in silicon and germanium. The major objective of the investigation was to gain a further understanding of the physical state of solute atoms and their interactions with defects in homopolar crystals. An attempt was also made to extend the theory and experimental results of equilibrium studies to kinetic phenomena associated with device manufacture. An experimental study of the kinetics of solute precipitation at dislocations was also carried out by electrical conductivity measurements. </p> <p> Original contributions which have been obtained from the results of this program are listed below. </p> <p> (1) The relative partial molar enthalpies and entropies of solution for the various systems are </p> <p> ∆Ħ_Cu (in Si)=37.3±0.5 Kcal./mole, ∆S⁻ᵉˣ_Cu(in Si)=7.1±0.4 cal./mole-ºK, </p> </p> ∆Ħ_Cu (in Ge)=41.3±0.7 Kcal./mole, ∆S⁻ᵉˣ_Cu(in Ge)=10.3±0.6 cal./mole-ºK, </p> <p> ∆Ħ_Au (in Si)=43.8±1.4 Kcal./mole, ∆S⁻ᵉˣ_Au(in Si)=6.8±1.0 cal./mole-ºK, </p> <p> ∆Ħ_Au (in Ge) ≳ 45 Kcal./mole, and ∆S⁻_Au(in Ge) ≳ 15 cal./mole-ºK. </p> <p> The partial molar enthalpy and entropy of copper in silicon with respect to Cu₃Si are 40.2±0.5 Kcal./mole and 9.7±0.5 cal./mole-°K, respectively. </p> <p> (2) Solubility measurements, metallography, and X-ray studies yielded evidence for delayed nucleation of intermediate compounds in copper-silicon diffusion couples. </p> <p> (3) The solubility of copper in vapor grown polycrystalline silicon is much greater than that in single crystal material below 800°C. The ratio of the grain boundary solubility to the single crystal solubility was estimated to be of the order of 5 x 10⁵. The high interaction energy between copper and grain boundaries in silicon (approximately 1.5 eV) was ascribed to chemical bonding. </p> <p> (4) Arsenic doping of germanium (such that the semiconductor remains intrinsic) enhances the solubility of copper in this material. This effect was quantitatively described by a theory of complex formation. </p> <p> (5) A study of the solubility of copper in p-type silicon indicated that copper is incompletely ionized in intrinsic silicon at elevated temperatures (≃1000°C). </p> <p> (6) The solubility of gold in silicon is decreased by boron doping, and this was explained on the basis of a low (less than unity) donor/acceptor ratio of substitutional gold. </p> <p> (7) The rate equation describing the precipitation of copper in silicon has a time exponent of 0.687±0.043. </p> <p> (8) Generalized phenomenological equations for ternary diffusion in covalent semiconductors were developed and it was demonstrated that information about diffusion phenomena may often be obtained from equilibrium measurements. </p> <p> (9) A quasi-steady state experiment was designed whereby copper segregated to regions of high boron concentration (in silicon) during a heat treatment operation, in qualitative agreement with theory. </p> / Thesis / Doctor of Philosophy (PhD)
28

Regulation of S-Adenosyl-L-Methonine Phosphoethanolamine-N-Methyltransferase Activity in Spinach

Drebenstedt, Martina 09 1900 (has links)
The compatible solute glycine betaine accumulates in many plants including spinach (Spinacea oleracea) under conditions of water deficit stress. The precursor to glycine betaine is choline, a ubiquitous metabolite in plants as a component of phosphotidylcholine. In spinach choline is synthesized from phosphocholine, a product of three sequential N-methylations of phosphoethanolamine catalysed by the cytosolic enzyme S-adenosyl-L-methionine: phosphoethanolamine-N-methyltransferase (PEAMT). PEAMT activity shows diurnal changes with peak activity at the end of the photoperiod and a decrease overnight. The activity of this enzyme is up-regulated 2 to 3-fold in salt-stressed plants relative to unstressed plants. The objective of this thesis is to determine how PEAMT activity is regulated in vivo. Thus, PEAMT activity, protein and transcript levels were quantified in spinach leaves from plants subjected to different light and salinity conditions. A spinach PEAMT eDNA sequence was used to over-express recombinant PEAMT in the protein expression vector pET30a (+). The presence of a polyhistidine-tag on the overexpressed protein allowed for purification by a cobalt metal affinity column. The affinity purified protein was used to produce polyclonal antibodies for immunoblot hybridization analysis. For these studies, PEAMT protein was first immunoaffinity purified from soluble extracts prepared from leaves and then the protein subjected to electrophoresis by SDS-p AGE. Enzyme assays and immunoblot analysis show PEAMT activity and protein levels increase and become relatively constant in leaves of plants exposed to continuous light. In continuous darkness, PEAMT activity and protein levels decrease and remain low and constant. Thus the pattern of changes in PEAMT activity levels are associated with changes in PEAMT protein levels. In contrast, Northern blot hybridizations show that under conditions of constant light, peamt transcript levels undergo cyclical changes with peak levels at 20 and 40 h and troughs at 28 and 52 h after the continuous light treatment was imposed. These peaks coincide with the dark and light cycles of the normal photoperiod. The same cyclical changes in peamt transcript levels was seen for plants transferred from a normal photoperiod to continuous darkness. Since these changes persist in the absence of a day/night cue we conclude that peamt transcript levels are circadian-regulated. The peamt transcript levels of control unstressed and salt-stressed plants also show circadian rhythms, however the levels found in salt-stressed plants were 0.5 to 2-fold higher than the controls. Therefore, while salinization of plants increases peamt transcript abundance, it does not alter the circadian rhythm that transcripts of this gene display. Changes in PEAMT activity and protein levels are likely controlled by other as yet unknown post-translational mechanisms, processes that override and obscure operation of a circadian rhythm in regulating the level of peamt transcripts. / Thesis / Master of Science (MS)
29

Mechanistic numerical modeling of solute uptake by plant roots / Modelagem numérica de extração de solutos pelas raízes

Bezerra, André Herman Freire 19 February 2016 (has links)
A modification in an existing water uptake and solute transport numerical model was implemented in order to allow the model to simulate solute uptake by the roots. The convection-dispersion equation (CDE) was solved numerically, using a complete implicit scheme, considering a transient state for water and solute fluxes and a soil solute concentration dependent boundary for the uptake at the root surface, based on the Michaelis- Menten (MM) equation. Additionally, a linear approximation was developed for the MM equation such that the CDE has a linear and a non-linear solution. A radial geometry was assumed, considering a single root with its surface acting as the uptake boundary and the outer boundary being the half distance between neighboring roots, a function of root density. The proposed solute transport model includes active and passive solute uptake and predicts solute concentration as a function of time and distance from the root surface. It also estimates the relative transpiration of the plant, on its turn directly affecting water and solute uptake and related to water and osmotic stress status of the plant. Performed simulations show that the linear and non-linear solutions result in significantly different solute uptake predictions when the soil solute concentration is below a limiting value (Clim). This reduction in uptake at low concentrations may result in a further reduction in the relative transpiration. The contributions of active and passive uptake vary with parameters related to the ion species, the plant, the atmosphere and the soil hydraulic properties. The model showed a good agreement with an analytical model that uses a linear concentration dependent equation as boundary condition for uptake at the root surface. The advantage of the numerical model is it allows simulation of transient solute and water uptake and, therefore, can be used in a wider range of situations. Simulation with different scenarios and comparison with experimental results are needed to verify model performance and possibly suggest improvements. / Uma modificação em um modelo existente de extração de água e transporte de solutos foi realizada com o objetivo de incluir nele a possibilidade de simular a extração de soluto pelas raízes. Uma solução numérica para a equação de convecção-dispersão (ECD), que utiliza um esquema de resolução completamente implícito, foi elaborada e considera o fluxo transiente de água e solutos com uma condição de contorno à superfície da raiz de extração de soluto dependente de sua concentração no solo, baseada na equação de Michaelis- Menten (MM). Uma aproximação linear para a equação de MM foi implementada de tal forma que a ECD tem uma solução linear e outra não-linear. O modelo considera uma raiz singular com geometria radial sendo sua superfície a condição de contorno (limite) de extração e sendo o limite extremo a meia-distância entre raízes vizinhas, função da densidade radicular. O modelo de transporte de soluto proposto inclui extração de soluto ativa e passiva e prediz a concentração de soluto como uma função do tempo e da distância à superfície da raiz, além de estimar a transpiração relativa da planta, que por sua vez afeta a extração de água e solutos e é relacionado com a condição de estresse da planta. Simulações mostram que as soluções linear e não-linear resultam em predições de extração de solutos significativamente diferentes quando a concentração de solutos no solo está abaixo de um valor limitante (Clim). A redução da extração em baixas concentrações pode resultar em uma redução adicional na transpiração relativa. As contribuições ativa e passiva da extração de solutos variam com parâmetros relacionados à espécie de íon, à planta, à atmosfera e às propriedades hidráulicas do solo. O modelo apresentou uma boa concordância com um modelo analítico que aplica uma condição de contorno linear, à superfície da raiz, de extração de solutos dependente da concentração no solo. A vantagem do modelo numérico sobre o analítico é que ele permite simular fluxos transientes de água e solutos, sendo, portanto, possível simular uma maior gama de situações. Se faz necessário simulações com diferentes cenários e comparações com dados experimentais para se verificar a performance do modelo e, possivelmente, sugerir melhorias.
30

Efeito do ambiente endócrino peri-ovulatório na expressão gênica e proteica de transportadores de glicose no endométrio durante a primeira semana do ciclo estral em bovinos de corte / Effect of the periovulatory endocrine milieu on endometrial glucose transporters gene and protein expression during the first week post-estrus in beef cattle

Moana Rodrigues França 18 January 2013 (has links)
Em bovinos de corte, maiores diâmetros do folículo pré-ovulatório (FPO) e as subsequentes altas concentrações de progesterona [P4] aumentam o crescimento do concepto e a taxa de prenhez. Formulou-se a hipótese que a modulação do tamanho do FPO e [P4] no diestro subsequente à ovulação do FPO estimulam a expressão endometrial de transcritos e proteínas da famílias das Solute Carrier Proteins (SLC) que estão relacionadas ao transporte de glicose. Vacas Nelore (n=60), solteiras e ciclando receberam duas injeções de PGF2&alpha; (PGF; 0,5mg; i.m.) com intervalo de 14 dias. Dez dias após (dia -10; D-10), receberam um dispositivo intravaginal liberador de P4 e benzoato de estradiol (2mg; i.m.). Para modular o crescimento do FPO e alterar a produção de P4 pós-ovulação, no D-10 os animais receberam PGF (grupo alta P4; AP) ou não (grupo baixa P4; BP). Dispositivos foram removidos e PGF injetada 60 a 42 horas antes da indução da ovulação para o grupo AP e 48 a 30 horas antes da indução para o grupo BP e ovulações foram induzidas com GnRH (buserelina; 10&micro;g; i.m.) no D0. Crescimento e ovulação do FPO e formação do CL foram avaliados por ultrassom e [P4] medidas por radioimunoensaio. No D7 os animais que ovularam foram abatidos (AP, N=18 e BP, N=18), o endométrio foi dissecado e submetido à extração de RNA total para análises de qPCR, extração de proteínas totais para análises de western blotting e incluído em parafina para análises de imunohistoquímica. Diferença entre as médias dos grupos foi determinada pelo teste t de student. O diâmetro máximo do FPO (média ± erro padrão da média; 12,8±0,4 vs. 11,1±0,4mm) foi maior no grupo AP (P<0,01). A [P4] no D7 foi maior no grupo AP (4,5±1,0 ng/mL vs. 3,3±1,1 ng/mL; P<0,05). As concentrações relativas dos transcritos que codificam SLCs foram determinadas por qPCR, usando a ciclofilina como controle endógeno. Não houve diferença na expressão de SLC2A1 (0,91±0,04 vs. 1,02±0,07), SLC2A3 (1,14±0,16 vs. 1,05±0,1), SLC2A4 (1,20±0,14 vs. 1,01±0,05), SLC2A5 (0,95±0,12 vs. 1,04±0,12), SLC5A1 (1,35±0,25 vs. 1,49±0,44), ATP1A2 (1,29±0,17 vs. 1,03±0,1), ATP1B2 (1,20±0,11 vs. 1,06±0,1), SLC37A4 (1,16±0,16 vs. 1,1±0,12), entre os grupos AP e BP respectivamente (P>0.05). Também não foi possível identificar diferença na quantidade proteica de SLC2A1 no endométrio dos animais do grupo AP em relação ao grupo BP. SLC2A1 foi identificada na membrana basal no epitélio luminal (EL), epitélio glandular (EG) e no estroma uterino dos animais. SLC2A4 foi identificada na membrana basal e membrana apical no EL, EG e no estroma uterino dos animais. Em conclusão, a modulação do tamanho do FPO e [P4] no diestro não afetaram a expressão gênica ou proteica dos transportadores de glicose. É possível que ao invés da expressão gênica ou proteica, a atividade transportadora das SLCs, ou ainda, a expressão e função de genes relacionados ao metabolismo de carboidratos, sejam regulados pelo ambiente endócrino peri-ovulatório em vacas. / In beef cattle, changes in the peri-ovulatory endocrine milieu are associated with conceptus growth and fertility. A large size of the pre-ovulatory follicle (POF) and resulting elevated progesterone (P4) concentrations during diestrus affect pregnancy rates positively. Our hypothesis is that modulation of POF size and diestrus P4 concentrations regulate nutrient availability in the uterus. Specifically, optimal glucose concentrations in the histotroph are required for adequate embryo growth during early gestation. The objective was to determine if POF size and resulting P4 concentrations during the first week of diestrus influence gene expression of Solute Carrier Protein (SLC) families that are related to glucose transport. Cyclic, non-lactating Nelore cows received two injections of cloprostenol (PGF; 0.5mg; i.m.) 14 days apart. Ten days later (day -10; D-10), cows received a P4-releasing device along with estradiol benzoate (2mg; i.m.). To modulate the growth of the POF and alter post-ovulatory P4 production, on D-10 animals received PGF (high post-ovulatory P4 group; HP) or not (low post-ovulatory P4 group; LP). The P4-releasing devices were removed and PGF injected 60 to 42 hours before the ovulation induction in the HP group and 48 to 30 hours before the ovulation induction in the LP group. Ovulation was induced with buserelin (GnRH; 10&micro;g; i.m.) on D0. Diameter of POF and ovulation were assessed by ultrasonography starting onD- 2. From D1 to D7, plasma was obtained for measurement of P4 concentration. On D7, cows that ovulated were slaughtered (HP, n=18 and LP, n=18) and endometrium was dissected and subjected total RNA extraction for qPCR analyzes, total protein extraction for western blotting analyzes and included in paraffin for imunohistochemical analyzes. Differences between group means were determined by student\'s t test. Maximum diameter of the POF (mean ± SEM; 12.8±0.4 vs. 11.1±0.4mm) was greater in HP vs. LP (P<0.01). Progesterone concentration on D7 was larger on the HP group (4.5±1.0 ng/mL and 3.3±1.1 ng/mL; P<0.05). Relative concentrations of transcripts coding for facilitative sugar transporters (SLC2A1, SLC2A3, SLC2A4 and SLC2A5), a sodium-dependent glucose co-transporter (SLC5A1) and other transporters related to glucose uptake (ATP1A2, ATP1B2, SLC37A4) were determined by qPCR, using cyclophilin as the endogenous control gene. There were no significant differences in expression of SLC2A1 (mean ± SEM;0.91±0.04 vs. 1.02±0.07), SLC2A3 (1.14±0.16 vs. 1.05±0.1), SLC2A4 (1.20±0.14 vs. 1.01±0.05), SLC2A5 (0.95±0.12 vs. 1.04±0.12), SLC5A1 (1.35±0.25 vs. 1.49±0.44), ATP1A2 (1.29±0.17 vs. 1.03±0.1), ATP1B2 (1.20±0.11 VS. 1.06±0.1) ,SLC37A4 (1.16±0.16 vs. 1.1±0.12), between HP and LP, respectively (P>0.05). There was no difference in the abundance of SLC2A1 protein between groups. The SLC2A1 protein was localized in the luminal epithelium (LE), glandular epithelium (GE) and uterine stroma (US) of animals. The SLC2A4 protein was localized on the basal and apical membrane of the LE, GE and US of animals. In conclusion, modulation of POF size and diestrus P4 concentrations did not affect the expression of glucose transporter genes or proteins. It is possible that activity of SLC proteins rather than gene expression, or alternatively, expression and function of genes related to carbohydrate metabolism, are regulated by the peri-ovulatory endocrine milieu in cows.

Page generated in 0.0252 seconds