Spelling suggestions: "subject:"solutionution height""
1 |
Cristallisation de ZnSO4,7H2O sous ultrasons : Étude expérimentale et étude microscopique / Sono-crystallization of ZnSO4.7H20Harzali, Hassen 24 June 2011 (has links)
La cristallisation assistée par ultrasons permet de diminuer le temps d'induction et la largeur de la zone métastable, de modifier la distribution de tailles, de modifier le faciès des cristaux et d'augmenter le nombre des cristaux formés. L'origine microscopique de cet effet reste à ce jour non élucidée. Les ultrasons de puissance engendrent dans un liquide la naissance et l'oscillation très violente de milliards de petites bulles de gaz, phénomène appelé cavitation. Le cycle d'une de ces bulles sur une période acoustique consiste en une phase explosive suivie d'une implosion violente. A la fin de l'implosion, la pression peut atteindre 1 GPa. Plusieurs hypothèses sur les mécanismes mis en jeu sont proposées dans la littérature : refroidissement de la solution et augmentation de la pression au voisinage de l'interface, évaporation du solvant dans la bulle, et ségrégation des molécules ou des ions du soluté au voisinage de la bulle lors de la phase implosive. Afin d'examiner l'influence de la pression, des expériences de cristallisation du sulfate de zinc heptahydraté ont été menées (mesure de temps d'induction). Ce sel présente une solubilité indépendante de la pression entre 0 et 10 000 bars. Nos expériences ont montré que le temps d'induction est fortement diminué en présence d'ultrasons. Ce résultat nous permet d'affirmer que la pression au voisinage de la bulle n'entre pas en jeu dans le mécanisme de la nucléation primaire du ZnSO4,7H2O en présence d'ultrasons. Après l'étude de l'effet de la sursaturation, nous avons essayé d'exploré l'effet de la puissance ultrasonore, du gaz dissous et de la hauteur du liquide dans la cuve sur le temps d'induction. Il a été constaté que les ultrasons permettent de diminuer le temps d'induction. Il a été observé que la courbe du temps d'induction en fonction de la hauteur de la solution présente un minimum. Un autre volet de cette thèse réservé à la modélisation et la simulation. Dans un premier temps, la concentration en clusters ou agrégats moléculaires au voisinage de la bulle été calculée dans le cas du ZnSO4,7H2O grâce à la théorie de la ségrégation en fonction de la pression acoustique. La simulation montre qu'il y a une sur-concentration des clusters (jusqu'à 25 fois supérieure à la concentration stationnaire) augmentant ainsi la probabilité de contact des clusters, durant un temps très court, pouvant ainsi modifier le processus global de nucléation. Dans un deuxième temps, la modélisation/simulation de l'acoustique par COMSOL est réalisée en vue de déterminer les résonances de notre système (liquide + parois de la cuve). Les résonances observées sont cohérentes avec les mesures de temps d'induction. / Power ultrasound is known to enhance crystals nucleation, and nucleation times can be reduced by oneup to three orders of magnitude for several organic or inorganic crystals. The precise physics involved in this phenomenon still remains unclear, and various mechanisms involving the action of inertial cavitation bubbles have been proposed. In this paper, two of these mechanisms, pressure and ségrégation effects, are examined. The first one concerns the variations of supersaturation induced by the high pressures appearing in the neighbourhood of a collapsing bubble, and the second one results from the modification of clusters distribution in the vicinity of bubble. Crystallisation experiments were performed on zinc sulphate heptahydrate ZnSO4. 7H2O, which has been chosen for its pressure-independent solubility, so that pressure variations have no effect on supersaturation. As observed in past studies on other species, induction times were found lower under insonification than under silent conditions at low supersaturations, which casts some doubts on a pure pressure effect. The interfacial energy between the solid and the solution was estimated from induction times obtained in silent conditions, and, using classical nucléation theory, the steady-state distribution of the clusters was calculated. Segregation theory was then applied to calculate the over-concentrations of n-sized clusters at the end of the collapse of a 4 lmbubble driven at 20 kHz by different acoustic pressures. The over-concentration of clusters close to the critical size near a collapsing bubble was found to reach more than one order of magnitude, which may favour the direct attachment process between such clusters, and enhance the global nucleation kinetics. The effects of acoustic cavitation on crystallization of ZnSO4. 7H2O was observed in a sono-reactor build-up from a large emitting area transducer located at the bottom of the vessel. The experimental results have shown that the dissipated acoustic power passes through a maximum at about 15±1 cm, and that the induction-time passes through a minimum for the same liquid-level. The dissipated-power and the induction-time are found to be well correlated as the liquid height was varied. The acoustics of the sono-reactor was studied with linear acoustics, accounting for the wall vibrations by using the COMSOL software. Theoretical dissipated acoustic powers were compared to the experimental ones.
|
Page generated in 0.0859 seconds