Spelling suggestions: "subject:"comatic variants"" "subject:"bysomatic variants""
1 |
Understanding and Improving Identification of Somatic VariantsVijayan, Vinaya 20 September 2016 (has links)
It is important to understand the entire spectrum of somatic variants to gain more insight into mutations that occur in different cancers for development of better diagnostic, prognostic and therapeutic tools. This thesis outlines our work in understanding somatic variant calling, improving the identification of somatic variants from whole genome and whole exome platforms and identification of biomarkers for lung cancer.
Integrating somatic variants from whole genome and whole exome platforms poses a challenge as variants identified in the exonic regions of the whole genome platform may not be identified on the whole exome platform and vice-versa. Taking a simple union or intersection of the somatic variants from both platforms would lead to inclusion of many false positives (through union) and exclusion of many true variants (through intersection). We develop the first framework to improve the identification of somatic variants on whole genome and exome platforms using a machine learning approach by combining the results from two popular somatic variant callers. Testing on simulated and real data sets shows that our framework identifies variants more accurately than using only one somatic variant caller or using variants from only one platform.
Short tandem repeats (STRs) are repetitive units of 2-6 nucleotides. STRs make up approximately 1% of the human genome and have been traditionally used as genetic markers in population studies. We conduct a series of in silico analyses using the exome data of 32 individuals with lung cancer to identify 103 STRs that could potentially serve as cancer diagnostic markers and 624 STRs that could potentially serve as cancer predisposition markers.
Overall these studies improve the accuracy in identification of somatic variants and highlight the association of STRs to lung cancer. / Ph. D.
|
2 |
Guiding Cancer Therapy: Evidence-driven Reporting of Genomic DataPerera-Bel, Julia 19 November 2018 (has links)
No description available.
|
3 |
Targeted Sequencing of Plasma-Derived vs. Urinary cfDNA from Patients with Triple-Negative Breast CancerHerzog, Henrike, Dogan, Senol, Aktas, Bahriye, Nel, Ivonne 05 December 2023 (has links)
In breast cancer, the genetic profiling of circulating cell-free DNA (cfDNA) from blood
plasma was shown to have good potential for clinical use. In contrast, only a few studies were performed investigating urinary cfDNA. In this pilot study, we analyzed plasma-derived and matching
urinary cfDNA samples obtained from 15 presurgical triple-negative breast cancer patients. We
used a targeted next-generation sequencing approach to identify and compare genetic alterations
in both body fluids. The cfDNA concentration was higher in urine compared to plasma, but there
was no significant correlation between matched samples. Bioinformatical analysis revealed a total of
3339 somatic breast-cancer-related variants (VAF ≥ 3%), whereof 1222 vs. 2117 variants were found
in plasma-derived vs. urinary cfDNA, respectively. Further, 431 shared variants were found in both
body fluids. Throughout the cohort, the recovery rate of plasma-derived mutations in matching
urinary cfDNA was 47% and even 63% for pathogenic variants only. The most frequently occurring
pathogenic and likely pathogenic mutated genes were NF1, CHEK2, KMT2C and PTEN in both
body fluids. Notably, a pathogenic CHEK2 (T519M) variant was found in all 30 samples. Taken
together, our results indicated that body fluids appear to be valuable sources bearing complementary
information regarding the genetic tumor profile.
|
Page generated in 0.059 seconds