• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 17
  • 9
  • Tagged with
  • 55
  • 20
  • 14
  • 14
  • 14
  • 14
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Particle kinematics in solar flares: observations and theory

Battaglia, Marina January 2008 (has links)
Zugl.: Zürich, Techn. Hochsch., Diss., 2008
22

Magnetic activity at the poles of the sun

Blanco Rodríguez, Julián January 2008 (has links)
Zugl.: Göttingen, Univ., Diss., 2008
23

Zum Nachweis solarer Neutronen auf Jungfraujoch /

Schubnell, Markus Peter. January 1988 (has links)
Diss. Philos.-naturwiss. Bern, 1988. / Bibliogr.: Bl. 205-209.
24

Magnetic fine structure in the solar photosphere observations and MHD simulations

Danilović, Sanja January 2009 (has links)
Zugl.: Göttingen, Univ., Diss., 2009
25

Spectroscopy of small scale magnetic structures in the solar atmosphere

Langhans, Kai Christian Gerd. Unknown Date (has links) (PDF)
University, Diss., 2003--Freiburg (Breisgau).
26

Center-to-limb investigations of solar photospheric magnetic features at high spatial resolution

Kobel, Philippe January 2009 (has links)
Zugl.: Göttingen, Univ., Diss., 2009
27

Solar differential rotation and its generators : computational and statistical studies /

Pulkkinen, Pentti. January 1998 (has links)
Diss. -- Helsingin yliopisto. / Includes bibliographical references.
28

Die Gestirne in der Landschaftsmalerei des Abendlandes : ein Beitrag zum Problem der Natur in der Kunst /

Roth, Alfred Guido. Roth, Alfred G. January 1945 (has links)
Diss. Bern.
29

Wasserstoffbrennen in der Sonne: Die 12C(p,γ)13N-Reaktion und die Radiofrequenz-Ionenquelle für den Felsenkeller-Beschleuniger

Reinicke, Stefan 15 January 2019 (has links)
Die Reaktion 12C(p,γ)13N bestimmt die Rate des Bethe-Weizsäcker-Zyklus in der anfänglichen Entwicklungsphase von Sternen und am äußeren Rand der Sonne. Eine genaue Kenntnis der Reaktionsrate ist somit für die Entwicklung von stellaren Modellen erforderlich. Über das Verhältnis der Raten von den Protoneneinfangreaktionen von 12C und 13C kann außerdem das entsprechende Isotopenverhältnis in Sternen bestimmt werden. Eine Revision der Rate von 12C(p,γ)13N könnte damit einen unerwartet hohen Isotopenanteil von 13C erklären, der in verschiedenen Meteoriteneinschlüssen gemessen wurde und mit den existierenden stellaren Modellen nicht hinreichend in Konsistenz gebracht werden kann. Für den S-Faktor der Reaktion existieren im Energiebereich unterhalb von 190 keV nur Messdaten aus den 1950er Jahren. Bei der Untersuchung von ähnlichen Reaktionen des Wasserstoffbrennens wurden die mit der verwendeten Messtechnik erlangten Messdaten durch moderne Experimente teilweise um einen Faktor zwei oder höher revidiert. Ziel der gegenwärtigen Arbeit war das Messen von S-Faktor-Werten in einem weiten Energiebereich von 130 keV bis 450 keV zur Überprüfung der alten Messdaten und um eine zukünftige präzisere Extrapolation zu astrophysikalisch relevanten Energien hin zu ermöglichen. Dabei wurde eine Messung in inverser Kinematik, eine Methode, für die bisher keine publizierten Daten zu der Reaktion existieren, am HZDR 3 MV Tandetron Beschleuniger durchgeführt mit TiH2-Proben, die mit 12C2+-Ionen bestrahlt wurden. Die Reaktion wurde mittels Gammaspektrometrie ausgewertet und die Proben durch die Methode der Nuklearen Resonanz-Reaktionsanalyse charakterisiert. / The reaction 12C(p,γ)13N determines the rate of the Bethe-Weizsäcker cycle in the initial development phase of stars and near the surface of the Sun. An exact knowledge of the reaction rate is thus required for the development of precise stellar models. In addition, the ratio of the rates of the proton capture reactions of 12C and 13C is used to determine the corresponding isotopic ratio in stars. A revision of the rate of 12C(p,γ)13N might help to explain an unexpectedly high isotopic abundance of 13C, which was measured in presolar grains and cannot be sufficiently explained with the existing stellar models. For the S-factor of 12C(p,γ)13N in an energy range below 190 keV, the only existing data were measured in the 1950s. For similar reactions of hydrogen burning, data obtained with these measuring techniques were revised by a factor of two or higher by modern experiments. The aim of the present thesis was to measure S-factor data in a wide energy range from 130 keV to 450 keV in order to verify the old data and to allow a more precise extrapolation towards astrophysically relevant energies in the future. A measurement in inverse kinematics, a method for which no published data on the reaction exist, was performed at the HZDR 3 MV Tandetron accelerator with a 12C2+ ion beam and the use of TiH2 targets. Gamma spectroscopy was used to measure the yield and the targets were characterized with nuclear resonant reaction analysis (NRRA).
30

Formation and stability of the solar tachocline in MHD simulations

Sule, Aniket January 2007 (has links)
The solar tachocline is a thin transition layer between the solar radiative zone rotating uniformly and the solar convection zone, which has a mainly latitudinal differential rotation profile. This layer has a thickness of less than $0.05R_{sun}$ and is subject to extreme radial as well as latitudinal shears. Helioseismological estimates put this layer at roughly $0.7R_{sun}$. The tachocline mostly resides in the sub-adiabatic, non-turbulent radiative interior, except for a small overlap with the convection zone on the top. Many proposed dynamo mechanisms involve strong toroidal magnetic fields in this transition region. The exact mechanisms behind the formation of such a thin layer is still disputed. A very plausible mechanism is the one involving a weak, relic poloidal magnetic field trapped inside the radiative zone, which is responsible for expelling differential rotation outwards. This was first proposed by citet{RK97}. The present work develops this idea with numerical simulations including additional effects like meridional circulation. It is shown that a relic field of 1~Gauss or smaller would be sufficient to explain the observed thickness of the tachocline. The stability of the solar tachocline is addressed as the next part of the problem. It is shown that the tachocline is stable up to a differential rotation of 52% in the absence of magnetic fields. This is a new finding as compared to the earlier two dimensional models which estimated the solar differential rotation (about 28%) to be marginally stable or even unstable. The changed stability limit is attributed to the changed stability criterion of the 3-dimensional model which also involves radial gradients of the angular velocity. In the presence of toroidal magnetic field belts, the lowest non-axisymmetric mode is shown to be the most unstable one for the radiative part of the tachocline. It is estimated that the tachocline would become unstable for toroidal fields exceeding about 100~Gauss. With both formation and stability questions satisfactorily addressed, this work presents the most comprehensive analysis of the physical processes in the solar tachocline to date. / Die Sonne besteht aus verschiedenen Zonen, die durch die Art des Energietransports von innen nach aussen unterschieden werden. Der innere Teil heißt Strahlungs-, der äußere Teil Konvektionszone. Die Grenzschicht zwischen den beiden Regionen liegt bei etwa 70% des Sonnenradius. Beide Zonen rotieren in ausgezeichneter Weise um die Sonnenachse. In der konvektiven Zone ändert sich die Rotationsrate mit dem Breitengrad und ist nur schwach von der radialen Position abhängig. Dies wird als latitudinale differentielle Rotation bezeichnet. Im Gegensatz dazu rotiert ein Großteil der Strahlungszone gleichförmig. Der Übergang von gleichförmiger Rotation im Inneren zu differentieller Rotation außen geschieht innerhalb einer sehr dünnen Schicht, die ungefähr mit der Grenzschicht zwischen den beiden Zonen übereinstimmt. Diese Schicht hat eine Ausdehnung von etwa 5% des Sonnenradius und wird als “Tachokline” bezeichnet. Die Existenz der Tachokline wurde vor etwa zwei Jahrzehnten bestätigt. Seit ihrer Entdeckung wurden verschiedenste Modelle vorgeschlagen, um die Existenz einer solchen Schicht zu erklären. Diese Arbeit wendet das bislang beliebteste und erfolgreichste dieser Modelle an, das zuerst von Rüdiger & Kitchatinov (1997) vorgeschlagen wurde. Darin wird angenommen, dass während ihrer Entstehung ein schwaches Magnetfeld im Inneren der Sonne eingeschlossen wurde. Ein solches Feld verdrängt die differentielle Rotation erfolgreich in den äußeren Randbereich der Strahlungszone und erzeugt so die Tachokline. Die Theorie nimmt weiter an, dass die Tachokline aktiv mit der darunterliegenden strahlungsdominierten Zone verbunden ist, gemäß der Beobachtung, dass ein Großteil der Tachokline unterhalb des Fußes der Konvektionszone liegt. Diese Arbeit legt verbesserte numerische Simulationen vor, die dem früheren Modell zwei neue physikalische Effekte hinzufügt: schwache radiale und horizontale Strömungen (“meridionale Strömungen” genannt) und Temperaturgradienten. Es wird gezeigt, dass ein eingeschlossenes Feld von weniger als einem Gauß ausreichend wäre, die beobachtete Dicke der Tachokline zu erkären. In einem weiteren Schritt wird versucht zu ergründen, ob die Tachokline eine stabile Schicht innerhalb der Sonne ist. Es wird gezeigt, dass sie, in Abwesenheit eines Magnetfeldes, stabil bleibt, solange die Winkelgeschwindigkeit am Pol nicht unter 52% derer am Äquator fällt. Da sekundäre Strömungen hauptsächlich horizontal verlaufen, haben Temperaturgradienten wenig Einfluss auf die Stabilität der Tachokline. In Gegenwart eines Magnetfeldes wird die Grenzschicht für Felder stärker als 100 Gauß instabil. Indem sowohl Fragen zur Entstehung als auch zur Stabilität zufriedenstellend angesprochen werden, stellt diese Arbeit die derzeit umfassendste Analyse der physikalischen Vorgänge in der Tachokline dar.

Page generated in 0.1277 seconds