• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formation and stability of the solar tachocline in MHD simulations

Sule, Aniket January 2007 (has links)
The solar tachocline is a thin transition layer between the solar radiative zone rotating uniformly and the solar convection zone, which has a mainly latitudinal differential rotation profile. This layer has a thickness of less than $0.05R_{sun}$ and is subject to extreme radial as well as latitudinal shears. Helioseismological estimates put this layer at roughly $0.7R_{sun}$. The tachocline mostly resides in the sub-adiabatic, non-turbulent radiative interior, except for a small overlap with the convection zone on the top. Many proposed dynamo mechanisms involve strong toroidal magnetic fields in this transition region. The exact mechanisms behind the formation of such a thin layer is still disputed. A very plausible mechanism is the one involving a weak, relic poloidal magnetic field trapped inside the radiative zone, which is responsible for expelling differential rotation outwards. This was first proposed by citet{RK97}. The present work develops this idea with numerical simulations including additional effects like meridional circulation. It is shown that a relic field of 1~Gauss or smaller would be sufficient to explain the observed thickness of the tachocline. The stability of the solar tachocline is addressed as the next part of the problem. It is shown that the tachocline is stable up to a differential rotation of 52% in the absence of magnetic fields. This is a new finding as compared to the earlier two dimensional models which estimated the solar differential rotation (about 28%) to be marginally stable or even unstable. The changed stability limit is attributed to the changed stability criterion of the 3-dimensional model which also involves radial gradients of the angular velocity. In the presence of toroidal magnetic field belts, the lowest non-axisymmetric mode is shown to be the most unstable one for the radiative part of the tachocline. It is estimated that the tachocline would become unstable for toroidal fields exceeding about 100~Gauss. With both formation and stability questions satisfactorily addressed, this work presents the most comprehensive analysis of the physical processes in the solar tachocline to date. / Die Sonne besteht aus verschiedenen Zonen, die durch die Art des Energietransports von innen nach aussen unterschieden werden. Der innere Teil heißt Strahlungs-, der äußere Teil Konvektionszone. Die Grenzschicht zwischen den beiden Regionen liegt bei etwa 70% des Sonnenradius. Beide Zonen rotieren in ausgezeichneter Weise um die Sonnenachse. In der konvektiven Zone ändert sich die Rotationsrate mit dem Breitengrad und ist nur schwach von der radialen Position abhängig. Dies wird als latitudinale differentielle Rotation bezeichnet. Im Gegensatz dazu rotiert ein Großteil der Strahlungszone gleichförmig. Der Übergang von gleichförmiger Rotation im Inneren zu differentieller Rotation außen geschieht innerhalb einer sehr dünnen Schicht, die ungefähr mit der Grenzschicht zwischen den beiden Zonen übereinstimmt. Diese Schicht hat eine Ausdehnung von etwa 5% des Sonnenradius und wird als “Tachokline” bezeichnet. Die Existenz der Tachokline wurde vor etwa zwei Jahrzehnten bestätigt. Seit ihrer Entdeckung wurden verschiedenste Modelle vorgeschlagen, um die Existenz einer solchen Schicht zu erklären. Diese Arbeit wendet das bislang beliebteste und erfolgreichste dieser Modelle an, das zuerst von Rüdiger & Kitchatinov (1997) vorgeschlagen wurde. Darin wird angenommen, dass während ihrer Entstehung ein schwaches Magnetfeld im Inneren der Sonne eingeschlossen wurde. Ein solches Feld verdrängt die differentielle Rotation erfolgreich in den äußeren Randbereich der Strahlungszone und erzeugt so die Tachokline. Die Theorie nimmt weiter an, dass die Tachokline aktiv mit der darunterliegenden strahlungsdominierten Zone verbunden ist, gemäß der Beobachtung, dass ein Großteil der Tachokline unterhalb des Fußes der Konvektionszone liegt. Diese Arbeit legt verbesserte numerische Simulationen vor, die dem früheren Modell zwei neue physikalische Effekte hinzufügt: schwache radiale und horizontale Strömungen (“meridionale Strömungen” genannt) und Temperaturgradienten. Es wird gezeigt, dass ein eingeschlossenes Feld von weniger als einem Gauß ausreichend wäre, die beobachtete Dicke der Tachokline zu erkären. In einem weiteren Schritt wird versucht zu ergründen, ob die Tachokline eine stabile Schicht innerhalb der Sonne ist. Es wird gezeigt, dass sie, in Abwesenheit eines Magnetfeldes, stabil bleibt, solange die Winkelgeschwindigkeit am Pol nicht unter 52% derer am Äquator fällt. Da sekundäre Strömungen hauptsächlich horizontal verlaufen, haben Temperaturgradienten wenig Einfluss auf die Stabilität der Tachokline. In Gegenwart eines Magnetfeldes wird die Grenzschicht für Felder stärker als 100 Gauß instabil. Indem sowohl Fragen zur Entstehung als auch zur Stabilität zufriedenstellend angesprochen werden, stellt diese Arbeit die derzeit umfassendste Analyse der physikalischen Vorgänge in der Tachokline dar.
2

The solar tachocline : a self-consistent model of magnetic confinement

Wood, Toby January 2011 (has links)
In this dissertation we consider the dynamics of the solar interior, with particular focus on angular momentum balance and magnetic field confinement within the tachocline. In Part I we review current knowledge of the Sun's rotation. We summarise the main mechanisms by which angular momentum is transported within the Sun, and discuss the difficulties in reconciling the observed uniform rotation of the radiative interior with purely hydrodynamical theories. Following Gough & McIntyre (1998) we conclude that a global-scale interior magnetic field provides the most plausible explanation for the observed uniform rotation, provided that it is confined within the tachocline. We discuss potential mechanisms for magnetic field confinement, assuming that the field has a roughly axial-dipolar structure. In particular, we argue that the field is confined, in high latitudes, by a laminar downwelling flow driven by turbulence in the tachocline and convection zone above. In Part II we describe how the magnetic confinement picture is affected by the presence of compositional stratification in the 'helium settling layer' below the convection zone. We use scaling arguments to estimate the rate at which the settling layer forms, and verify our predictions with a simple numerical model. We discuss the implications for lithium depletion in the convection zone. In Part III we present numerical results showing how the Sun's interior magnetic field can be confined, in the polar regions, while maintaining uniform rotation within the radiative envelope. These results come from solving the full, nonlinear equations numerically. We also show how these results can be understood in terms of a reduced, analytical model that is asymptotically valid in the parameter regime of relevance to the solar tachocline. In Part IV we discuss how our high-latitude model can be extended to a global model of magnetic confinement within the tachocline.
3

Le confinement magnétique de la tachocline solaire

Barnabé, Roxane 10 1900 (has links)
Réalisé en co-direction avec Antoine Strugarek. / La tachocline solaire est encore aujourd’hui un important sujet de débat dans la communauté. La compréhension de cette mince couche, à l’interface entre les zones radiative et convective, est très importante à la compréhension globale du fonctionnement du Soleil. En effet, l’inclusion d’une tachocline a un impact majeur dans les modèles de dynamo générant le champ magnétique du Soleil. De plus, la rotation différentielle observée dans la zone de convection devrait se propager dans la zone de radiation, où la rotation est uniforme, de sorte que la tachocline devrait être beaucoup plus épaisse que ce que les observations indiquent. Le processus menant au confinement de la tachocline est encore incertain, bien que de nombreuses hypothèses furent apportées pour tenter de l’expliquer. Un des ces scénarios propose que la pénétration du champ magnétique dynamo sous la zone convective mène à la suppression de la rotation différentielle dans la tachocline. Nous présentons ici un modèle MHD simplifié en une dimension afin de tester ce scénario de tachocline rapide. Nous nous intéressons à deux cas particuliers : une tachocline où le transport de moment cinétique est dû à la viscosité, puis une tachocline où l’épaississement radiatif domine la viscosité. Nous avons analysé plusieurs simulations dans le but de déterminer dans quelles conditions physiques le confinement de la tachocline est possible via ce scénario. L’amplitude du champ magnétique pénétrant sous la zone convective, la diffusivité magnétique, la viscosité et la diffusivité thermique ont un impact majeur sur les résultats et nous concluons en déterminant selon quels régimes de paramètres la tachocline pourrait être confinée par un tel champ dynamo. / The solar tachocline remains the subject of vigorous ongoing research efforts. Understanding the dynamics of this thin layer at the interface between the radiative and convective zones is important to the overall understanding the Sun’s inner workings. Indeed, the presence of a tachocline plays a major role in most dynamo models that describe the generation of the solar magnetic field. Moreover, the differential rotation observed in the convection zone should spread in the radiation zone, where the rotation is uniform, so the tachocline should be much thicker than inferred from helioseismic inversions. The physical mechanism(s) responsible for confining the tachocline has not yet been identified with confidence, although many promising hypotheses have been put forth. One of these invokes the penetration of a dynamo magnetic field below the convective zone, leading to the suppression of the differential rotation in the tachocline through the action of magnetic stresses. We present here a simplified MHD model formulated in one spatial dimension, in order to test this fast tachocline scenario. We focus on two specific physical cases : one where the angular momentum transport is due to the viscosity and the other where radiative spreading dominates over viscosity. We carry out and analyze several simulations to determine under which physical conditions the confinement of the tachocline is possible via this scenario. The amplitude of the magnetic field penetrating the convective zone, the magnetic diffusivity, the viscosity and the thermal diffusivity all have a major impact on the results, and we conclude by determining under which parameters the tachocline could be confined by such a dynamo field.
4

Turbulence, transport et confinement : des tokamaks au magnétisme des étoiles

Strugarek, Antoine 19 November 2012 (has links) (PDF)
Cette thèse s'inscrit dans le contexte de l'étude de l'auto-organisation des plasmas chauds magnétisés. Nous nous intéressons en particulier aux deux objets que sont les étoiles et les tokamaks. Nous les étudions à l'aide de simulations numériques en utilisant des codes premiers principes dans le contexte des phénomènes de turbulence, de transport et de confinement dans les plasmas. La première partie de cette thèse s'attache à donner une introduction sur les caractéristiques des plasmas des étoiles et des tokamaks, ainsi que sur les raisons qui nous ont poussé à les étudier conjointement. Puis, nous développons en deuxième partie des travaux appliqués aux étoiles. A l'aide de simulations numériques, nous étudions pour la première fois en géométrie sphérique et en 3D l'interaction des mouvements turbulents avec un champ magnétique interne dans le Soleil, dans la région de la tachocline qui agit comme une barrière de transport du moment cinétique. Nous montrons qu'un tel champ magnétique ne peut expliquer l'épaisseur de la tachocline que nous observons, et donnons des pistes de réflexion pour comprendre cette épaisseur. Nous explorons également dans cette partie les implications que l'environnement d'une étoile (en particulier le vent de l'étoile, et les planètes gravitant autour) peut avoir sur son organisation interne. Cette étude nous permet aussi d'étudier l'interaction des vents stellaires avec les magnétosphères planétaires qui agissent comme des barrières de transport pour la matière. Des travaux spécifiques aux tokamaks sont ensuite présentés dans une troisième partie. Nous y développons une étude numérique des mécanismes expérimentaux conduisant à la création de barrières de transport dans les tokamaks. Ces barrières de transport permettent l'accès à des régimes de fusion nucléaire performants. Pour la première fois, nous montrons théoriquement comment déclencher la formation de ces barrières dans des simulations turbulentes de codes premiers principes. Enfin, la dernière partie présente les résultats des réflexions communes issue de cette thèse fai- sant le pont entre deux communautés scientifiques. L'utilisation d'une méthode spectrale originale pour l'analyse de phénomènes multi-échelles y est exposée. Elle est successivement développée puis appliquée pour mettre en évidence les mécanismes de saturation de la dynamo stellaire et de l'instabilité du gradient de température ionique dans les tokamaks. Un modèle unique traitant de l'interaction entre la turbulence et les écoulements de grande échelle est ensuite développé à la fois dans le contexte de la tachocline solaire et dans celui des tokamaks, formalisant l'analogie qui existe entre les deux objets de notre étude.

Page generated in 0.0346 seconds