Spelling suggestions: "subject:"barrières dde transport"" "subject:"barrières dee transport""
1 |
Turbulence, flows and transport barriers at the tokamak plasma edge / Turbulence, écoulements et barrières de transport dans le plasma de bord de tokamakChôné, Laurent 14 January 2016 (has links)
Cette thèse porte sur l'interaction entre turbulence et écoulement au bord du plasma de tokamak, et leur influence sur le confinement. La turbulence est la principale contribution au transport dans les machines de fusion magnétique, et un facteur limitant leur performance. Elle peut être stabilisée par les écoulements dans le plasma, via la décorrélation des cellules de convection par le cisaillement, et des couplages non-linéaires. La réduction localisée du transport turbulent par un écoulement cisaillé (barrière de transport) est souvent observée dans les expériences, et des régimes à confinement amélioré tels que le mode à Haut confinement sont obtenus sur de nombreuses machines. Les expériences tendent à montrer que l'écoulement moyen responsable de la barrière est gouverné par l'équilibre des forces, mais qu'il existe une dynamique complexe entre la turbulence, les écoulements zonaux et l'écoulement moyen pendant la phase de transition. Dans cette thèse, nous enrichissons un modèle fluide de turbulence du plasma de bord afin d'inclure la relaxation collisionelle de l'écoulement vers l'équilibre des forces. Nous montrons que la contribution des effets néoclassiques permet la formation spontanée d'une barrière de transport dans les simulations en forçage par un flux. Certains éléments dynamiques similaires à la transition L-H et au mode H sont recouvrés, tels que des relaxations de la barrière, ainsi que des oscillations du champ électrique lors de la formation de la barrière. Notre analyse montre que les écoulements zonaux causent une réduction temporaire de la turbulence via le couplage non-linéaire, ce qui permet l’établissement de la barrière. / The topic of this thesis is the interaction between turbulence and flows at the tokamak edge, and their influence on the confinement. Turbulence is the main contribution to the outward transport in magnetic fusion devices, and a strong limiting factor for their performance. It can be stabilised by flows, through shear-mediated decorrelation of convective cells, and through non-linear coupling. Strong shear flows causing a localised reduction of transport (transport barrier) are often observed in experiments, and several regimes of improved confinement such as the High-confinement mode are accessed routinely. There is a growing body of evidence from experiments showing that the mean flow responsible for the barrier is governed by force balance, while non-linear interplay between turbulence, turbulence-driven zonal-flows, and the mean flow occurs during the transition phase. In this thesis, we extend a fluid model for plasma edge turbulence to include collisional relaxation of flows towards force. We show that accounting for a contribution of neoclassical allows for the spontaneous formation of a transport barrier to occur in flux-driven simulation. Dynamical features reminiscent of the L-H transition and H-mode are recovered, such as relaxation-oscillations of the barrier and dithering of the radial electric field during the barrier formation. An analysis is carried out to identify the roles of zonal-flows and force balance during the transition, and it is found that in our simulations that zonal flows provide temporary quenching of the turbulence via non-linear coupling, allowing for the mean flow to grow and form the barrier.
|
2 |
Turbulence, transport et confinement : des tokamaks au magnétisme des étoilesStrugarek, Antoine 19 November 2012 (has links) (PDF)
Cette thèse s'inscrit dans le contexte de l'étude de l'auto-organisation des plasmas chauds magnétisés. Nous nous intéressons en particulier aux deux objets que sont les étoiles et les tokamaks. Nous les étudions à l'aide de simulations numériques en utilisant des codes premiers principes dans le contexte des phénomènes de turbulence, de transport et de confinement dans les plasmas. La première partie de cette thèse s'attache à donner une introduction sur les caractéristiques des plasmas des étoiles et des tokamaks, ainsi que sur les raisons qui nous ont poussé à les étudier conjointement. Puis, nous développons en deuxième partie des travaux appliqués aux étoiles. A l'aide de simulations numériques, nous étudions pour la première fois en géométrie sphérique et en 3D l'interaction des mouvements turbulents avec un champ magnétique interne dans le Soleil, dans la région de la tachocline qui agit comme une barrière de transport du moment cinétique. Nous montrons qu'un tel champ magnétique ne peut expliquer l'épaisseur de la tachocline que nous observons, et donnons des pistes de réflexion pour comprendre cette épaisseur. Nous explorons également dans cette partie les implications que l'environnement d'une étoile (en particulier le vent de l'étoile, et les planètes gravitant autour) peut avoir sur son organisation interne. Cette étude nous permet aussi d'étudier l'interaction des vents stellaires avec les magnétosphères planétaires qui agissent comme des barrières de transport pour la matière. Des travaux spécifiques aux tokamaks sont ensuite présentés dans une troisième partie. Nous y développons une étude numérique des mécanismes expérimentaux conduisant à la création de barrières de transport dans les tokamaks. Ces barrières de transport permettent l'accès à des régimes de fusion nucléaire performants. Pour la première fois, nous montrons théoriquement comment déclencher la formation de ces barrières dans des simulations turbulentes de codes premiers principes. Enfin, la dernière partie présente les résultats des réflexions communes issue de cette thèse fai- sant le pont entre deux communautés scientifiques. L'utilisation d'une méthode spectrale originale pour l'analyse de phénomènes multi-échelles y est exposée. Elle est successivement développée puis appliquée pour mettre en évidence les mécanismes de saturation de la dynamo stellaire et de l'instabilité du gradient de température ionique dans les tokamaks. Un modèle unique traitant de l'interaction entre la turbulence et les écoulements de grande échelle est ensuite développé à la fois dans le contexte de la tachocline solaire et dans celui des tokamaks, formalisant l'analogie qui existe entre les deux objets de notre étude.
|
Page generated in 0.0813 seconds