• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 14
  • 14
  • 10
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Genetic analysis of Striga hermonthica resistance in Sorghum (Sorghum bicolor) genotypes in Eastern Uganda.

Robert, Olupot John. 12 November 2013 (has links)
Sorghum (Sorghum bicolor) is the third most important cereal food crop in Uganda. However, the parasitic weed Striga hermonthica severely constraints its production. The use of Striga resistant sorghum varieties may be one of the most feasible ways of managing the Striga problem. A series of studies were carried out with the overall objective to develop new sorghum genotypes that are resistant to Striga and high yielding in Eastern Uganda. Initially, a participatory rural appraisal (PRA) was carried out with the main objectives to study the current constraints faced by farmers in sorghum production and determine their preferences for new sorghum varieties. Secondly, fifty different African sorghum accessions were evaluated to determine phenotypic and genotypic variability for Striga resistance and identify suitable parents to be used in breeding for new Striga resistant and high yielding sorghum genotypes. Thirdly, a genetics study was conducted to determine gene action responsible for Striga resistance and sorghum yield in new sorghum genotypes. Finally, laboratory studies were carried out to identify specific mechanisms of Striga resistance available in new sorghum genotypes and their parents. During the PRA, Striga was identified as the main constraint limiting sorghum production in Eastern Uganda, followed by insect pests. Farmers indicated preference for red gain sorghum with erect and compact heads, a plant height of 1.5m and a maturity period of around three months, as well as Striga resistance and drought tolerance. From farmers’ own assessments, the individual field surveys and soil seed bank analyses that were carried out, the degree of Striga infestation in farmers’ fields was found to be high. Both phenotypic and genotypic factors contributed significantly to the variability observed among the African sorghum accessions with respect to Striga resistance and sorghum crop performance indicating that Striga resistance can be improved through selection. However, techniques that minimise environmental effects need to be employed in order to improve on heritability. The values for genetic coefficient of variation (GCV) and genetic advance (GA) indicated that genetic gain for Striga resistance could be achieved by selection based on area under Striga severity progress curve (AUSVPC), area under Striga number progress curve (AUSNPC) and individual Striga emergence counts. The sorghum accessions SRN39, Brhan, Framida, Gubiye, Wahi, P9407 and N13 were found to be resistant to Striga hermonthica. These accessions consistently showed low AUSNPC, AUSVPC, and individual Striga emergence, Striga vigour and severity indices. These accessions could be used as sources of Striga resistance genes when breeding for Striga resistance in sorghum. In the study to determine gene action responsible for Striga resistance and sorghum yield, significant genetic variation for Striga resistance and sorghum yield parameters was observed among the new sorghum genotypes and their parents. The sorghum parental lines: Brhan, SRN39, Hakika and Sekedo consistently had negative GCA effects for AUSNPC and AUSVPC, while SRN39 and Hakika additionally had negative GCA effects for Striga vigour, indicating that they were effective in transferring Striga resistance into their progeny. The new genotypes: SRS1608, SRS3408, SRS2408, SRS4609, SRS3108, SRS2908, SRS2609, SRS609 and SRS1708 had negative SCA effects for AUSNPC, AUSVPC and Striga vigour meaning that they were resistant to Striga. Sorghum parental lines: Sekedo, Brhan, Framida and Hakika had positive GCA effects for head length, meaning that they increased head length in their crosses. The genotypes: SRS3408, SRS5309, SRS1608 and SRS2908 derived from the above parents had the longest heads compared to other progenies, which were on average, 20% longer than their parents. The genotypes: SRS609, SRS1408, SRS2608 and SRS3408 were the highest grain yielders and yielded 11-51% better than the highest yielding parent (Sekedo) under the non Striga environment. The parental lines; Sekedo, Brhan and Framida had positive GCA effects for grain yield indicating that they could act as sources of genes for grain yield increase. The genotypes; SRS609, SRS4609 and SRS2908 had large positive SCA effects for grain yield. The relative contributions of GCA effects to the observed genotypic variances were 80.5%, 43.3%, 65%, 92.6% and 53.2% for AUSNPC, AUSVPC, Striga vigour, sorghum head length and plant height respectively. This shows that additive gene action was important in controlling Striga resistance, sorghum head length and plant height in the present sorghum populations. Laboratory studies aimed at investigating the specific mechanisms of Striga resistance available in new sorghum genotypes found that two new sorghum genotypes, SRS1608 and SRS1208 expressed both the low germination stimulant character and low haustoria initiation as mechanisms of resistance to S. hermonthica. The sorghum genotypes, SRS2808 and SRS1108, and two fixed lines, Brhan and Hakika expressed only the low germination stimulant character, while the genotypes, SRS608, SRS3408, SRS4109 and SRS2308 expressed only the low haustoria initiation mechanism. The inheritance patterns of the low germination stimulant character in the present sorghum genotypes varied. In some genotypes, it appeared to be controlled by a single gene while in others; it appeared to be controlled by more than one gene. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
12

Integrating sorghum [sorghum bicolor (L.) Moench) breeding and biological control using fusarium oxysporum against striga hermonthica in Ethiopia.

Teshome, Rebeka Gebretsadik. January 2013 (has links)
Sorghum [Sorghum bicolor (L.) Moench] is a major food security crop for millions of people in sub-Saharan Africa and the fourth most important crop in Africa. The potential sorghum yields are limited due to a number of abiotic, biotic and socio-economic constraints. Among the biotic stresses is the parasitic weed, Striga hermonthica, which inflicts yield losses ranging from 30-100%. Various control options have been recommended to reduce levels of Striga damage. However, these techniques need to be integrated for effective control and to boost sorghum productivity. A series of experiments was conducted to integrate host resistance improvement and the use of a biological control agent, Fusarium oxysporum f.sp. strigae to control Striga hermonthica. These studies were also focused on improving breeders‟ awareness of the traits that farmers‟ desire, on the assumption that farmers‟ variety preference traits are the missing link in technology development and adoption process for S. hermonthica management. The objectives of the study were to: 1) determine farmers‟ views on sorghum production opportunities; threats; indigenous knowledge and perceptions; breeding priorities; Striga infestation; and the coping mechanisms of farmers in the north eastern and north western Ethiopia, 2) evaluate sorghum genotypes for compatibility to F. oxysporum inoculation where grown in Striga infested soil in controlled environments, 3) determine field responses of sorghum genotypes and F. oxysporum compatibility for integrated Striga management (ISM), 4) determine the variability present among selected sorghum genotypes exhibiting S. hermonthica resistance, and compatibility with the biological control agent using phenotypic and simple sequence repeat (SSR) markers, 5) identify F. oxysporum compatible sorghum parents and hybrids with high combining ability for grain yield, yield components, and Striga resistance for ISM, and 6) undertake farmers‟ participatory assessment, and identify their preferred traits for sorghum genotypes under ISM, simultaneously with the breeders‟ evaluation. A participatory rural appraisal (PRA) research was conducted involving 315 farmers in nine districts of three administrative zones within two provinces in Ethiopia. Sorghum landraces were preferred by >85% of participants rather than previously improved released varieties. The participating farmers listed and prioritized their sorghum production constraints. In the North Shewa and North Wello zones drought was the most important constraint, followed by Striga. In the Metekel zone Striga was the number one constraint followed by a lack of genotypes with high grain quality. Controlled environment experiments were conducted involving greenhouse and laboratory tests in order to evaluate 50 sorghum genotypes for their compatibility with F. oxysporum and for possible deployment of the bio-control agent to control Striga. Striga population was reduced by 92% through the application of F. oxysporum, resulting in yield increment of 144%. Twelve sorghum genotypes were identified as promising parents for breeding and to control Striga through integration of host resistance and F. oxysporum seed treatment. During field and sick plot plot evaluations differential responses to F. oxysporum application among the sorghum genotypes were observed for various attributes including Striga plant height. Most traits showed highly significant (p<0.001) genotype X site interactions. Similarly, the main effects of F.oxysporum application were highly significant (p<0.001) across sites for most of the traits. The genotype and genotype X environment biplot identified 13 genotypes that consistently performed well following Fusarium application. The variability present among 14 selected sorghum genotypes exhibiting S. hermonthica resistance, and compatibility with a biological control agent, Fusarium oxysporum, were determined using phenotypic and 20 polymorphic simple sequence repeat (SSR) markers. Highly significant (p<0.001) differences were detected among genotypes for phenotypic traits. Principal component analysis showed three components that accounted for 73.99% of the total variability exhibited among genotypes. Cluster analysis allocated the genotypes into two major groups, one with a further two subgroups based on morphological traits, showing clear demarcations between the genotypes. The SSR markers revealed high levels of polymorphisms among genotypes, with the mean number of alleles per locus being 6.95 and the mean polymorphic information content being 0.80. The observed genetic diversity was relatively wide, with the allele sizes ranging from 203.6-334 bp. The SSR markers allocated genotypes into two distinct clusters close to the phenotypic markers. Forty sorghum hybrids were developed through a line by tester mating design involving 10 lines selected for their compatibility with F. oxysporum and high agronomic performances and four Striga resistant tester parents. The F1s and their parents were field evaluated with complementary in-vitro tests. Field evaluations were conducted at two locations: Kobo and Shewa Robit in Ethiopia, which are well known for their severe Striga infestation. Significant (p<0.05) general combining ability (GCA) effects were observed among testers and lines at both sites for days to 50% flowering and maturity, plant height, biomass, number of Striga plants and Striga plant height. Furthermore, significant (p<0.05) specific combining ability (SCA) effects were detected for days to 50% flowering, biomass, grain yield and number of Striga plants. From the complementary in-vitro experiment, highly significant variation (p<0.01) was exhibited due to line x tester interaction for maximum Striga germination distance. The study identified paternal parents with high GCA effects including SRN-39 and Birhan and maternals 235761, 2384443, IC9830, 235466, 237289,235763, and 235929 to be useful for breeding for ISM in sorghum. At Kobo, cross 235763 x N-13 and Shewa Robit IC9830 x SRN-39 had significantly negative SCA effects for the numbers of Striga plants. Progenies of these crosses will be selected in the Striga resistance breeding program. In the participatory sorghum genotypes assessment, farmers were invited to assess and select the genotypes based on their preferences at maturity and harvesting. The standard agronomic traits and Striga parameters relevant for breeding were collected by the breeders. Earliness, Striga resistance, high yield and high grain quality and threshability were the most important farmers‟-preferred traits for sorghum genotypes. Comparative analyses between farmers‟ and breeders‟ evaluations revealed highly significant correlations (p<0.01) except between Striga resistance and Striga damage and pest resistance and insect damage. Repeatability of scoring genotypes among farmers was consistent (>0.80) for all traits except Striga and pest resistance. The prioritized traits through farmers‟ participation are important for further breeding program. Overall, the study established farmers‟ preferred traits, the effectiveness of ISM to boost sorghum productivity, and identified useful parents and crosses for effective sorghum breeding to control Striga in Ethiopia. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
13

Mutagenesis and development of herbicide resistance in sorghum for protection against Striga.

Ndung'u, David Kamundia. January 2009 (has links)
Sorghum (Sorghum bicolor) is an important cereal crop in sub-Saharan Africa. The parasitic weed Striga hermonthica is a major biotic constraint to sorghum production. A novel technology where planting seeds are coated with herbicide to kill Striga that attach to the roots of the host has been shown to be effective in protecting the cereal crop from Striga damage. However, the host plant must have herbicide tolerance. This technology has not been tested in sorghum because there are no herbicide tolerant sorghum varieties available in Kenya and is, therefore, unavailable for subsistence farmers. One of the ways in which genetic variation can be enhanced and herbicide resistance developed is through chemical mutagenesis with ethyl methane sulfonate (EMS). The objectives of this project, therefore, were to: 1) identify sorghum production constraints through farmer PRA in order to determine breeding priorities.in two Striga endemic districts in western Kenya; 2) develop an EMS mutagenesis protocol for sorghum and to enhance the genetic variability of the crop using chemical mutagenesis; 3) evaluate EMS-derived sorghum mutants for improved agronomic performance; 4) develop acetolactate synthase (ALS) herbicide resistance in sorghum and to characterize the mode of inheritance of the trait; 5) determine the effect of herbicide coating of seed of herbicide tolerant sorghum on Striga infestation. In order to determine breeding priorities and constraints in sorghum production and the likelihood of adoption of herbicide seed coating technology, a survey involving 213 farmers was conducted in two Striga endemic rural districts of Nyanza province in Kenya. Results indicated that local landraces like Ochuti, and Nyakabala were grown by more farmers (> 60%) than the improved varieties like Seredo and Serena (48%). Popularity of the landraces was linked to Striga tolerance, resistance to drought, bird damage and storage pests, yield stability and high satiety value. Major constraints to sorghum production were drought, Striga weed, storage pests, bird damage and poverty among the rural farmers. Important characteristics farmers wanted in new varieties were Striga and drought resistance, earliness, resistance to bird and weevil damage and good taste. Striga infestations in sorghum fields were > 70%. Cultural Striga control options were considered inadequate while inorganic fertilization and chemical control were considered effective but unaffordable. Farmers’ willingness to pay a premium of over 30% for a Striga solution gave indication that herbicide seed coating if effective could be adopted by farmers. As a prerequisite to development of herbicide resistance, a comparative study was carried out to determine optimum conditions for mutagenesis and to induce genetic variation in the sorghum. Two sorghum varieties were mutagenized using varying concentrations (0.1 to 1.5% v/v) of EMS and two exposure times (6h and 12h). In laboratory and greenhouse experiments, severe reduction of sorghum root and shoot lengths indicated effective mutagenesis. The LD50 based on shoot length reduction was 0.35% and 0.4% EMS for 6h for Seredo and Kari/mtama-1, respectively. The highest mutation frequency based on chlorophyll abnormalities was 56% for 0.3% EMS for 6h. In the M2 generation, phenotypic variances for panicle characteristics were increased on treatment with EMS. However, significant effects of exposure time and variety indicated the necessity of genotype optimization for some traits. In order to determine the significance of mutation breeding in sorghum, 78 mutant lines derived from EMS mutagenesis, their wild type progenitor (Seredo) and two local checks (Kari/mtama-1 and Serena) were evaluated for agronomic performance in two locations in Kenya. There were significant (P = 0.05) effects among entries for grain yield, 1000-seed weight and visual scores for height uniformity, head exertion, head architecture and overall desirability. The highest yielding entry-mutant line “SB2M13” had a yield of 160% and 152% relative to the wild type (Seredo) and the best check Kari/mtama-1, respectively. Mutant line “tag27” had the highest 1000-seed weight which was 133% relative to the wild type. Seven mutant lines were rated superior to the wild type for panicle characteristics, head exertion and overall desirability. However, the majority of mutants were inferior to the wild type for most characteristics. Superior mutant lines may be developed into direct mutant varieties after multi-location trials or used as breeding material for sorghum improvement. In order to develop acetolactate synthase (ALS) herbicide resistance in sorghum, over 50,000 seeds of Seredo were mutagenized with 0.3% EMS. Over four million M2 plants were screened using 20g ha-1 of the ALS herbicide, sulfosulfuron. Five mutants (hb46 hb12, hb462, hb56 and hb8) survived the herbicide treatment and were confirmed to be tolerant. Mutant lines displayed differential herbicide tolerance, and the general order of tolerance after spray or seed coat application was hb46 > hb12 > hb462 ~ hb56 > hb8. The LD50 values for herbicide application as a spray, or seed coat, showed mutant lines to be up to 20 and 170 fold, respectively, more resistant than the wild type. Chi square analysis of data from herbicide screening of F2 generation of mutant X wild type crosses indicated no difference from the Mendelian segregation of 1:2:1 indicating the herbicide tolerance was inherited as a single semi-dominant gene. Mutant X mutant crosses did not show allelism indicating that the tolerance in all five mutants could be a result of the same gene mutation. To determine effect of herbicide seed coating on Striga infestation, the five herbicide tolerant mutant lines, hb46, hb12, hb462, hb56 and hb8 and the wild type progenitor Seredo were coated with varying concentrations (0.5-1.5% g ha-1) of sulfosulfuron and planted in a Striga endemic field. There were significant (P=0.05) effects of herbicide concentration on Striga density, Striga flowering and seed set, and sorghum plant stand and biomass. All treatments with herbicide coated on sorghum seeds had lower Striga emergence. Coating sorghum seed with 1g ha-1 sulfosulfuron reduced Striga infestation, Striga flowering and Striga seed set by 47%, 52% and 77%, respectively, and was considered the most effective rate as it did not result in sorghum biomass reduction. Mutants displayed differential herbicide tolerance and Striga resistance. Combining seed coating with high herbicide tolerance and inherent Striga resistance would be most effective for Striga control. Overall, the study showed that EMS mutagenesis is effective in inducing variation in sorghum for several traits including herbicide resistance. The mutants developed in this study will be important for sorghum breeding and for protection of sorghum against the Striga weed. / Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2009.
14

Combining ability and heterosis for stem sugar traits and grain yield components in dual-purpose sorghum (Sorghum bicolor L. Moench) germplasm.

Makanda, Itai. January 2009 (has links)
Sorghum is the fifth most important cereal crop in the world and ranks third in Africa, and it is potentially the number one cereal for the semi-arid environments in sub-Saharan Africa. Sorghum varieties have been developed specifically for grain, fodder or stem sugar but not for dual-purpose combining grain and stem sugar. Such varieties could be beneficial to the resource-poor farmers by providing grain for food and sugar rich stalks that can be sold for bioethanol production. However, there are no suitable dual-purpose cultivars on the market. There is also limited information about the combining ability, gene action and genetic effects and relationships between stem sugar and grain yield which is required in devising appropriate strategies for developing dual-purpose sorghum varieties. Furthermore, there is also lack of information about the perceptions of resource-poor, small-scale farmers and other important stakeholders on the potential of dual-purpose sorghum production and the value chain. Therefore, the objectives of this study were to: (i) investigate the awareness of the farmers, industry and other stakeholders on the dual-purpose sorghum varietal development and its feasibility, (ii) screen germplasm for use as source materials useful for grain yield and stem sugar traits, (iii) investigate the inheritance and heterosis levels attainable in grain yield components and stem sugar traits in dual-purpose sorghums, (iv) determine the relationships between stem sugar traits and grain yield components in dual-purpose sorghums, and (v) investigate the fertility restoration capacities of selected male-fertile lines used as male parents through the evaluating seed set in experimental dual-purpose hybrids. Two surveys were conducted to establish stakeholders’ level of awareness and perceptions on the potential and feasibility of developing and utilising dual-purpose sorghums in Southern Africa. One survey was carried out in the semi-arid tropical lowlands in Zimbabwe under the conditions of small-scale and resource-poor farmers while the other, which targeted sugar industries, plant breeders, engineers, political leaders, economists and extension workers, was conducted in South Africa and Zimbabwe. Data were analysed using SPSS computer package. Results showed that both farmers and the non-farmer stakeholders were in agreement on the view that dual-purpose sorghum would be a viable enterprise that could alleviate poverty, enhance food security, create rural employment and boost rural development in southern African countries. Farmers were willing to adopt the cultivars if they were made available. The stakeholders also suggested mechanisms to overcome the infrastructural, economic and technical challenges associated with the technology. Screening of regional and international germplasm collection held at the University of KwaZulu- Natal in South Africa revealed high genetic variability for grain yield, stem brix and stem biomass yield that can be exploited in dual-purpose sorghum cultivar development. Ten lines were selected for inclusion as parents in the dual-purpose sorghum breeding programme. The selections were crossed to eight cytoplasmic male-sterile lines originating from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in accordance with a North Carolina Design II mating scheme. The 18 parents, together with the 80 experimental hybrids generated and two check varieties were evaluated for grain yield and stem sugar traits in six tropical low- and mid-altitude environments in Mozambique, South Africa and Zimbabwe. Stem sugar concentration and stem biomass were measured at the hard dough stage of each entry due to maturity differences between the genotypes. Grain yield was measured and adjusted to 12.5% moisture content. Data were analysed in GenStat computer package following a fixed effects model. Both additive and non-additive gene effects were important in controlling stem brix, stem biomass, grain yield and the associated traits in dual-purpose sorghum. This showed that breeding progress can be achieved through hybridisation and selection. Cultivars showing high stability, and high standard and better-parent heterosis for the three traits were identified implying that breeding for general adaptation was an option and that productivity could be enhanced by breeding hybrid cultivars. The relationships between traits were estimated using correlation and path-coefficients analysis. Grain yield was found to be negatively and significantly associated with stem brix but was positively and significantly associated with stem biomass. This implied that breeding for high stem brix might compromise grain yield but selection for high stem biomass improved grain yield. Stem biomass and stem brix were not significantly correlated. The general negative relationship between grain and stem brix was attributed to the predominance of entries with contrasting performances for the two traits. However, the relationship between grain yield and stem brix of the top 20 performing entries showed a non-significant relationship between stem brix and grain yield suggesting that the traits were independent of each other. This finding was confirmed by the presence of crosses that combined high performance for both stem brix and grain yield as well as stem biomass among the hybrids. The relationships between stem brix and stem biomass for the top 20 performers remained non-significant while that between stem biomass and grain yield became stronger, positive and significant. Direct selection for stem brix and grain yield was shown to be more important than indirect selection, while selection for stem biomass improves grain yield but had no effect on stem brix. Therefore, it is possible to breed dualpurpose sorghum cultivars and the identification of genotypes combining the desirable traits is prudent in addition to general relationships information. The study on fertility restoration capacities as evaluated through hybrid seed set showed that fertility restoration was under the control of genes with both additive and non-additive action. Since restoration is conferred by a single dominant gene (Rf1), this could have arisen from the action of the modifier genes that have been previously reported to influence it. This showed that fertility restoration can be improved through breeding. Hybrid combinations showing complete seed set and high performance for grain, stem brix and stem biomass were identified and are potential dual-purpose sorghum cultivars. Overall, the study showed that development of dualpurpose sorghum cultivars would be feasible and genotypes identified as potential cultivars in this study will be forwarded for further testing across many sites and seasons in the target environments. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.

Page generated in 0.0645 seconds