• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 5
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 21
  • 16
  • 14
  • 12
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural acoustic analysis of shape memory alloy hybrid composite panels

Anders, William S. 01 November 2008 (has links)
Shape memory alloy (SMA) hybrid adaptive composites are a class of materials which combine the strain recovery and elastic properties transformation capabilities of SMA fibers with the structural characteristics of advanced composite materials. This study utilizes the Rayleigh-Ritz method and finite panel acoustic radiation theory to investigate the use of SMA hybrid composite materials for adaptive structural acoustic control by active structural tuning. Analytical models are formulated considering classical laminated plate theory (CLPT) and first-order shear deformation theory (FSDT), to predict modal and structural acoustic response to incident low frequency plane wave acoustic excitation. The analysis is further developed to consider simply supported adaptive panels that are tuned by local fiber activation, such that a panel composed of elastically uniform sections can be evaluated in a piece-wise fashion. / Master of Science
22

Active control of sound transmission/radiation from elastic plates using multiple piezoelectric actuators

Wang, Bor-Tsuen 19 October 2005 (has links)
This thesis presents a theoretical analysis of active control of sound radiation from elastic plates with the use of piezoelectric transducers as actuators. A strain-energy model (SEM), based upon the conservation of strain energy, for a laminate beam with attached or embedded finite-length spatially distributed induced strain actuators was first developed to determine the induced strain distribution. The equivalent axial force and bending moment induced by the embedded or surface bonded actuators were also calculated. The one-dimensional SEM was then extended to a two-dimensional model by employing the classical laminate plate theory and utilizing Heaviside functions to integrate the actuator influence on the substructure. The mechanics model can determine the structural coupling effect and predict the structural response as a result of piezoelectric actuation. A baffled simply-supported rectangular plate subjected to harmonic disturbances was considered as the plant. Piezoceramic materials bonded to the surfaces of the plate or point force shakers were applied as control actuators. Both microphones in the radiated far-field and accelerometers located on the plate were considered as error sensors. In addition, distributed sensors for pressure and structural motion were modelled. The cost function was formulated as the modulus squared of the error signal. Linear quadratic optimal control theory was then applied to minimize the cost function to obtain the optimal input voltages to the actuators. Both near-field and far-field pressure and intensity responses as well as plate displacement distributions were presented to show the effectiveness and mechanisms of control for various configurations of the actuators and sensors. Plate wavenumber analysis was also shown to provide a further insight into control technique. The results show that piezoelectric actuators perform very well as control sources, and that pressure sensors have many advantages over acceleration sensors while distributed sensors are superior to discrete sensors. The optimal placement of multiple fixed size piezoelectric actuators in sound radiation control is also presented. A solution strategy is proposed to calculate the applied voltages to piezoelectric actuators with the use of linear quadratic optimal control theory. The location of piezoelectric actuator is then determined by minimizing an objective function, which is defined as the sum of the mean square sound pressure measured by a number of error microphones. The optimal location of piezoelectric actuators for sound radiation control is found so as to minimize the objective function and shown to be dependent on the excitation frequency. In particular, the optimal placement of multiple piezoelectric actuators for on-resonance and off-resonance excitation is presented. Results show that the optimally placed piezoelectric actuators perform far better in sound radiation control than arbitrarily selected. This work leads to a design methodology for adaptive or intelligent material systems with highly integrated actuators and sensors. The optimization procedure also leads to a reduction in the number of control transducers. / Ph. D.
23

Vliv exostóz na přenos zvukových signálů lidským uchem / Influence of exostoses on ear sound transfer function

Vališová, Šárka January 2014 (has links)
Exostoses are surface periosteophyte inside the external auditory canal of the human ear. The main objective of the diploma thesis is to determine the potencial impact of the narrowing of external auditory canal by exostoses on the mechanical sound transmission into the internal ear. The task was solved by FEM modelling in the ANSYS system. The simple finite element 2D model of the normal human ear was used and it has been taken from the diploma thesis B Ouali: Development of 2D finite element model of human ear (BUT Brno, 2009). At the model, including the external ear canal, elastic eardrum, otitis cavity with otitis ossicles and the cavity of the internal ear with internal ear partition, the alterations simulating different size of narrowing a and different positionig of exostoses were done. The influence of the exostoses on the sound transfer characteristics for air sound transmission and for bone sound transmission was discused. The results were analysed and compared with audiology.
24

Evaluation of active acoustic methodology in diagnosis of pleural effusion

Minai Zaiem, Hamed 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Pleural effusion is a common respiratory condition that is characterized by an abnormal collection of fluid in the lung cavity. In this study, an innovation using the transmission of sound into the respiratory system as a novel tool to detect fluid in the lung was developed. First, the method was evaluated on a phantom model of a lung. Based on the results of this test model, the appropriate technique was used in a clinical study. This method has several advantages, such as that is non-invasive, low cost, and easy for clinical review. Two techniques, including analysis of the frequency response of the model and the transient time of transmitted sound in the lung, were evaluated in the phantom models of the human lung. Two phantom models with similar geometry to the human lung, including a healthy model (without fluid in the model) and a pleural effusion model (with bulk of fluid in the model) were developed. These models have acoustical properties similar to the lung parenchyma. To obtain the frequency responses of the model, a sine sweep signal was transmitted into the model and the frequency response of the model was then calculated using the fast Fourier transform. The transient time of the transmitted sound was calculated using a cross correlation method. The results show that the locations of fluid in the model were detectable using both techniques. However, the transient time technique is better than the frequency response technique because it is simple, fast, and has potential for use in a clinical enviorment. Based on the results obtained from the phantoms, the transient time method was performed on both 22 healthy participants and four patients diagnosed with pleural effusion. To perform this technique on human subjects, a data acquisition system was developed. Two types of sound, including a complex chirp sound and a polyphonic sound, were transmitted into the respiratory systems of the participants. The time delay between a reference microphone, located on the trachea of the subject, and eight microphones attached to the chest was computed using a cross correlation method, and the effect of inhalation and lung size on the transient time of transmitted sound on the healthy subject was evaluated. The results show that using transmission of sound in the lung is a promising technique in the diagnosis of pleural effusion. / AFRIKAANSE OPSOMMING: Pleurale effusie is 'n algemene respiratoriese toestand wat gekenmerk word deur 'n abnormale versameling van vloeistof in die longholte. In hierdie studie is 'n innoverende manier ontwikkel om vloeistof in die long met behulp van die transmissie van klank te bespeur. Die metode is eers op 'n fantoommodel van 'n long geëvalueer. Op grond van die resultate van hierdie toetsmodel is die geskikte tegniek in 'n kliniese studie gebruik. Hierdie metode het verskeie voordele, soos dat dit ingreepsvry is, nie duur is nie en kliniese evaluering moontlik maak. Twee tegnieke, naamlik ontleding van die frekwensierespons van die model en die oorgangstyd van versende klank in die long, is in die fantoommodel van die menselong geëvalueer. Twee fantoommodelle met soortgelyke geometrie aan die menselong, met inbegrip van 'n gesonde model (sonder vloeistof in die model) en 'n pleurale-effusie-model (met 'n massa vloeistof in die model), is ontwikkel. Hierdie modelle het akoestiese eienskappe soortgelyk aan die longparenchiem. Om die frekwensieresponse van die model te verkry, is 'n sinuskrommesein tot in die model versend. Die frekwensierespons van die model is met behulp van die vinnige Fourier-transformasie bereken. Die oorgangstyd van die versende klank is deur 'n kruiskorrelasie-metode bereken. Die resultate toon dat die ligging van die vloeistof in die model met albei tegnieke bespeur kan word. Die oorgangstyd-tegniek is egter beter as die frekwensierespons-tegniek, aangesien dit eenvoudig en vinnig is en maklik in 'n kliniese omgewing gebruik kan word. Op grond van die resultate wat van die fantome verkry is, is die oorgangstyd-metode op 22 gesonde deelnemers en vier pasiënte wat met pleurale effusie gediagnoseer is, uitgevoer. 'n Dataverkrygingstelsel is ontwikkel ten einde hierdie tegniek op proefpersone uit te voer. Twee soorte klank, naamlik 'n komplekse tjirpgeluid en 'n polifoniese klank, is na die respiratoriese stelsels van die deelnemers versend. Die tydvertraging tussen 'n verwysingsmikrofoon in die tragea van die proefpersoon en agt mikrofone wat aan die bors vasgeheg is, is met 'n kruiskorrelasie-metode bereken, en die uitwerking van inaseming en longgrootte op die oorgangstyd van versende klank op die gesonde proefpersone is geëvalueer. Die resultate toon dat die gebruik van transmissie van klank in die long 'n belowende tegniek vir die diagnose van pleurale effusie is.
25

The effects of damping treatment on the sound transmission loss of honeycomb panels

Ramanathan, Sathish Kumar January 2010 (has links)
<p>In the industry, all passenger vehicles are treated with damping materials to reduce structure-borne sound. Though these damping materials are effective to attenuate structure-borne sound, they have little or no effect on the air-borne sound transmission.The lack of effective predictive methods for assessing the acoustic effects due to added damping on complex industrial structures leads to excessive use of damping materials.Examples are found in the railway industry where sometimes the damping material applied per carriage is more than one ton. The objective of this thesis is to provide a better understanding of the application of these damping materials in particular when applied to lightweight sandwich panels.</p><p>As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist in the design process. Sound transmission loss of sandwich plates with isotropic core materials can be accurately predicted by calculating the wave propagation in the structure. A modified wave propagation approach is used to predict the sound transmission loss of sandwich panels with honeycomb cores. The honeycomb panels are treated as being orthotropic and the wave numbers are calculated for the two principle directions. The orthotropic panel theory is used to predict the sound transmission loss of panels. Visco-elastic damping with a constraining layer is applied to these structures and the effect of these damping treatment on the sound transmission loss is studied. Measurements are performed to validate these predictions.</p><p>Sound radiated from vibrating structures is of great practical importance.The radiation loss factor represents damping associated with the radiation of sound as a result of the vibrating structure and can be a significant contribution for structures around the critical frequency and for composite structures that are very lightly damped. The influence of the radiation loss factor on the sound reduction index of such structures is also studied.</p> / QC 20100519 / ECO2-Multifunctional body Panels
26

The Sound Insulation of Cavity Walls

Cambridge, Jason Esan January 2012 (has links)
Lightweight building materials are now commonly employed in many countries in preference to heavyweight materials. This has lead to extensive research into the sound transmission loss of double leaf wall systems. These studies have shown that the wall cavity and sound absorption material placed within the cavity play a crucial role in the sound transmission through these systems. However, the influence of the wall cavity on the sound transmission loss is not fully understood. The purpose of this research is to obtain a comprehensive understanding of the role played by the wall cavity and any associated sound absorption material on the sound transmission loss through double leaf wall systems. The research was justified by the fact that some of the existing prediction models do not agree with some observed experimental trends. Gösele’s theory is expanded and used in the creation of an infinite and finite vibrating strip model in order to acquire the desired understanding. The sound transmission loss, radiated sound pressure and directivity of double leaf systems composed of gypsum boards and glass have been calculated using the developed model. A method for calculating the forced radiation efficiency has also been proposed. Predictions are compared to well established theories and to reported experimental results. This work also provides a physical explanation for the under-prediction of the sound transmission loss in London’s model; explains why Sharp’s model corresponds to Davy’s with a limiting angle of 61° and gives an explanation for Rindel’s directivity and sound transmission loss measurements through double glazed windows. The investigation also revealed that a wide variety of conclusions were obtained by different researchers concerning the role of the cavity and the properties of any associated sound absorption material on the sound transmission loss through double wall systems. Consequently recommendations about the ways in which sound transmission through cavity systems can be improved should always be qualified with regard to the specific frequency range of interest, type of sound absorption material, wall panel and stud characteristics.
27

Sound transmission through lined ducts in parallel.

Patrick, William Paul January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Vita. / Includes bibliographical references. / Ph.D.
28

An acoustic countermeasure to supercavitating torpedoes

Cameron, Peter J. K. 12 June 2009 (has links)
Supercavitating torpedoes pose new threats to submarines, surface ships, and shore targets whose current countermeasures are inadequate against this technology. These torpedoes have the advantage over their predecessors and companion weapons of dramatically increased speed, which reduces the reaction time available for deploying a countermeasure heightening the threat to their intended target. Proliferation of supercavitating torpedoes has motivated research on countermeasures against them as well as on the fluid phenomenon which makes them possible. The goal of this research was to investigate an envisaged countermeasure; an acoustic field capable of slowing or diverting the weapon by disrupting the cavitation envelope. The research focused on the interactions between high-level sound signals and a supercavity produced by a small free-flying projectile. In order to conduct this study it was necessary to achieve three preliminary accomplishments involving the design of: 1) experimental apparatus that allowed for the study of a small-scale supercavitating projectile in the laboratory environment; 2) apparatus and software for measuring and recording information about projectile dynamics and supercavity geometry; and 3) an acoustic array and power source capable of focusing the desired sound signal in the path of the supercavitating object. Positive results have been found which show that the accuracy of a supercavitating projectile can indeed be adversely affected by the sound signal. This research concludes with results that indicate that it is acoustic cavitation in the medium surrounding the supercavity that is responsible for the reduced accuracy. A hypothesis has been presented addressing the means by which the acoustic cavitation could cause this effect. Additionally, corrugations on the cavity/water interface imposed by the pressure signal have been observed and characterized.
29

Priority CSMA schemes for integrated voice and data transmission

Ching, Kai-Sang January 1988 (has links)
Priority schemes employing the inherent properties of carrier-sense multiple-access (CSMA) schemes are investigated and then applied to the integrated transmission of voice and data. A priority scheme composed of 1-persistent and non-persistent CSMA protocols is proposed. The throughput and delay characteristics of this protocol are evaluated by mathematical analysis and simulation, respectively. The approach of throughput analysis is further extended to another more general case, p-persistent CSMA with two persistency factors, the throughput performance of which had not been analyzed before. Simulations are carried out to study the delay characteristics of this protocol. After careful consideration of the features of the priority schemes studied, two protocols are proposed for integrated voice and data transmission. While their ultimate purpose is for integrated services, they have different application. One of them is applied to local area network; the other is suitable for packet radio network. The distinctive features of the former are simplicity and flexibility. The latter is different from other studies in that collision detection is not required, and that it has small mean and variance of voice packet delay. Performance characteristics of both of these protocols are examined by simulations under various system parameter values. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
30

The effects of damping treatment on the sound transmission loss of honeycomb panels

Ramanathan, Sathish Kumar January 2010 (has links)
In the industry, all passenger vehicles are treated with damping materials to reduce structure-borne sound. Though these damping materials are effective to attenuate structure-borne sound, they have little or no effect on the air-borne sound transmission.The lack of effective predictive methods for assessing the acoustic effects due to added damping on complex industrial structures leads to excessive use of damping materials.Examples are found in the railway industry where sometimes the damping material applied per carriage is more than one ton. The objective of this thesis is to provide a better understanding of the application of these damping materials in particular when applied to lightweight sandwich panels. As product development is carried out in a fast pace today, there is a strong need for validated prediction tools to assist in the design process. Sound transmission loss of sandwich plates with isotropic core materials can be accurately predicted by calculating the wave propagation in the structure. A modified wave propagation approach is used to predict the sound transmission loss of sandwich panels with honeycomb cores. The honeycomb panels are treated as being orthotropic and the wave numbers are calculated for the two principle directions. The orthotropic panel theory is used to predict the sound transmission loss of panels. Visco-elastic damping with a constraining layer is applied to these structures and the effect of these damping treatment on the sound transmission loss is studied. Measurements are performed to validate these predictions. Sound radiated from vibrating structures is of great practical importance.The radiation loss factor represents damping associated with the radiation of sound as a result of the vibrating structure and can be a significant contribution for structures around the critical frequency and for composite structures that are very lightly damped. The influence of the radiation loss factor on the sound reduction index of such structures is also studied. / QC 20100519 / ECO2-Multifunctional body Panels

Page generated in 0.1301 seconds