• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation and Prediction of the Sound Transmission Loss of Plywood Constructions

Wareing, Robin Richard January 2015 (has links)
The sound transmission loss of a range of plywood panels was measured to investigate the influence of the orthotropic stiffness of the plywood panels. The plywood panels were tested as single and also double leaf partitions, with a range of stud configurations. A new method was developed for predicting the sound transmission loss of single leaf partitions with both orthotropic and frequency dependent stiffness values. The sound transmission loss was evaluated for two significantly different sample sizes. The observed influence of the sample size on the measured sound transmission loss was profound. The construction of the partition was shown to significantly affect the influence of the sample size on the sound transmission loss. A qualitative analysis based on existing published research of the contributing factors is presented, and methods for adjusting the results for the small sample size for comparison with the large results were developed. The influence of a range of acoustic treatments of lightweight plywood partitions was investigated. The treatments involved internal viscoelastic materials and decoupled mass loaded barriers in various arrangements. The attachment between the treatment and the plywood panel was found to influence the sound transmission loss significantly. A prediction method based on published models was modified to allow the influence of the treatments to be included. Reasonable agreement was achieved between the predicted and measured results for a wide range of samples. A prediction method was developed that accounts for the influence of orthotropic, frequency dependent material parameters. This method utilised an adaptive, numerical integration method to solve an analytical formulation for the sound transmission loss. The influence of the finite sample size was accounted for using an expression for the finite panel radiation impedance. The finite panel radiation impedance was predicted analytically and an approximation was also presented. The presence of a significant source room niche was accounted for by applying an appropriate limit to the integration range of the angle of incidence. The prediction methods developed are compared with the measured transmission loss results from both the small and large test facilities. Good agreement was seen for some of the predicted results. Generally the agreement within the coincidence region was worse than for the rest of the transmission loss curve. The inclusion of orthotropic and frequency dependent stiffness values significantly improved the agreement within the coincidence region.
2

Sound Transmission Loss of Sandwich Panels

Phillips, Timothy Jason Nirmal January 2012 (has links)
The sound transmission loss characteristics of plywood based sandwich panels were investigated. Measurements were made of the sound transmission loss of a range of materials and used as a baseline for comparison while a sound transmission loss optimisation method was developed. A unique test rig was built and calibrated to determine selected mechanical properties of materials of interest. The results of sound transmission loss and material properties measurements were used to select an appropriate prediction model, which was then used in conjunction with a mathematical optimisation model to determine combinations of materials and panel parameters which result in improved sound transmission loss. An effort was made to reproduce these predictions in experimental testing by constructing several prototype panels.
3

Acoustic Analysis of R.E.E.L. Semi-Reveberant Sound Chamber

Elliston, Sean David 2012 May 1900 (has links)
The Riverside Energy Efficiency Laboratory at Texas A&M University conducts sound quality testing for the Home Ventilating Institute. When the Home Ventilating Institute initially established their sound quality test, the semi-reverberant sound chamber to conduct the sound quality tests was built at the Riverside Energy Efficiency Laboratory. The Home Ventilating Institute created a standard to specify the procedure for sound quality testing. This standard contained high consideration for performance, reliability, and accuracy. The standard was based on several ANSI standards for sound testing procedures, sound setup and equipment standards, and sound rating calculations. The Riverside Energy Efficiency Laboratory presently continues sound quality testing for the Home Ventilating Institute using the semi-reverberant sound chamber. The standard has been revised and updated due to developments for better sound quality test result representation. Resourceful data to assist with further developments comes from the semi-reverberant sound chamber's characteristics. This thesis's purpose was to conduct an analysis of the performance for the semi-reverberant sound chamber. The sound chamber's sound transmission loss was determined using a fan source with known sound power across the 24 tested 1/3 octave frequency bands, 50 Hz - 10,000 Hz. The sound pressure was recorded inside the chamber and outside the chamber at the sound source. The sound source was placed at three different locations around the sound chamber. In addition, the sound pressure was measured in real time to study the amount of sound pressure fluctuation and maximum amplitude. The background noise was measured inside the sound chamber for these tests. The sound transmission loss profiles were identical for each location. The lowest two 1/3 octave bands, 50 Hz and 63 Hz, have low transmission losses. The profile jumps up at the following 1/3 octave band and increases with a peak around 1600 Hz before slightly decreasing. The profile of the sound pressure in the time domain showed similar results. The most fluctuation with the greatest peaks was present in the lower 1/3 octave frequency bands, and diminished the higher the 1/3 octave frequency band. Sound sources around the sound chamber can be evaluated to determine whether an impact is possible on the sound quality tests from these results. The impact of modifications to the sound chamber can use the transmission loss values to help determine the expected performance increase.
4

The Sound Insulation of Cavity Walls

Cambridge, Jason Esan January 2012 (has links)
Lightweight building materials are now commonly employed in many countries in preference to heavyweight materials. This has lead to extensive research into the sound transmission loss of double leaf wall systems. These studies have shown that the wall cavity and sound absorption material placed within the cavity play a crucial role in the sound transmission through these systems. However, the influence of the wall cavity on the sound transmission loss is not fully understood. The purpose of this research is to obtain a comprehensive understanding of the role played by the wall cavity and any associated sound absorption material on the sound transmission loss through double leaf wall systems. The research was justified by the fact that some of the existing prediction models do not agree with some observed experimental trends. Gösele’s theory is expanded and used in the creation of an infinite and finite vibrating strip model in order to acquire the desired understanding. The sound transmission loss, radiated sound pressure and directivity of double leaf systems composed of gypsum boards and glass have been calculated using the developed model. A method for calculating the forced radiation efficiency has also been proposed. Predictions are compared to well established theories and to reported experimental results. This work also provides a physical explanation for the under-prediction of the sound transmission loss in London’s model; explains why Sharp’s model corresponds to Davy’s with a limiting angle of 61° and gives an explanation for Rindel’s directivity and sound transmission loss measurements through double glazed windows. The investigation also revealed that a wide variety of conclusions were obtained by different researchers concerning the role of the cavity and the properties of any associated sound absorption material on the sound transmission loss through double wall systems. Consequently recommendations about the ways in which sound transmission through cavity systems can be improved should always be qualified with regard to the specific frequency range of interest, type of sound absorption material, wall panel and stud characteristics.
5

The radiation of Sound from Surfaces at Grazing Angles of Incidence

Pavasovic, Vladimir, vpavasovic@wmgacoustics.com.au January 2006 (has links)
It is difficult to predict the sound radiation from large factory roofs. The existing infinite panel theories of sound insulation are not sufficient when the sound radiates at grazing angles. It has been shown that the reason for the collapse of the theory is the well known result for the radiation efficiency. This research will present a simple analytic strip theory, which agrees reasonably well with numerical calculations for a rectangular panel. Simple analytic strip theory has lead to the conclusion that it is mainly the length of the panel in the direction of radiation, rather than its width that is important in determining its radiation efficiency. The findings of the current research also indicated that apart from the effect due to coincidence, a panel was non-directional compared to an opening.
6

Acoustical Characteristics of Aircraft Panels

Liu, Bilong January 2006 (has links)
A deterministic approach based on a modal expansion and modal receptance method has been developed to evaluate the airborne sound insulation of aircraft panels with stringer and ring frame attachments. Furthermore, this method was extended to predict the noise radiation of stiffening panel subjected to TBL excitation. This approach integrates with the fast and accurate methods in evaluating the modal excitation terms and modal radiation efficiency. Based on these advantages, the effects of the curvature, overpressure, stringers, ring frames, hydrodynamic coincidence, composite structures and structural dissipation on the acoustical properties of a typical aircraft panel are able to be investigated efficiently. Theoretic predictions were compared with laboratory measurements conducted on both model structures and aircraft panels. It was found that a small curvature may result in significant deterioration of the sound transmission loss at frequencies of interest. Unlike a flat uniform panel, the theoretical prediction for curved panels from the infinite model can not provide good agreement with the measurement close to and well below the ring frequency. However, in this frequency range, the finite model has been proved to be applicable For the large curved airplane panels studied here, it was found that the ring frames have little influence on sound transmission loss in the frequency range of interest. However the stringers may have considerable influence on sound transmission loss. The stringer improves this for a curved panel around the ring frequency, but it may result in a potential deterioration of the sound transmission loss above the ring frequency. In this study it is evident that the sound transmission loss of the composite skin attached with composite stringers is lower than that of the metallic panel attached with metallic stringers. At frequencies higher than the corresponding ring frequency of the curved panel, both experiment and theoretical prediction reveal that the overpressure at the concave side tends to reduce the sound transmission loss at the rate of about 0.5dB /10000 Pa. While at lower frequencies, say well below the ring frequency, the overpressure may increase or reduce sound transmission loss of a finite panel, depending on the shift of the resonant frequencies resulting from the overpressure. For TBL excitation, numerical investigation reveals that the panel with the ring frames behaves more like a sub-panel between two frames. Below 500Hz, the ring frames slightly enhance the sound radiation while dramatically increasing it around 1.3kHz. The TBL forcing field excites the same vibration lever for the panel with and without ring frame attachments, but the modes excited for the panel with ring frames radiate more sound. Unlike the ring frames, the stringers increase sound radiation below 1kHz. Above 1kHz, the sub-panels between two bays respond independently and the stringer effects is therefore not obvious. / <p>QC 20100908</p>
7

Investigation Of The Use Of Sandwich Materials In Automotive Body Structures

Hara, Deniz 01 January 2006 (has links) (PDF)
The use of sandwich structures in automobile body panels is investigated in this thesis. The applications on vehicles such as trains, aeroplanes and automobiles, advantages, isadvantages and modelling of sandwich structures are discussed and studies about static, vibrational and acoustic benefits of sandwich structures by several authors are presented. The floor, luggage, firewall and rear wheel panels in sheet metal form is replaced with panel made from sandwich materials in order to reduce the weight obtained by a trial and error based optimization method by keeping the same bending stiffness performance. In addition to these, the use of sandwich structures over free layer surface damping treatments glued on floor panel to decrease the vibration levels and air-borne noise inside the cabin is investigated. It has been proven that, the same vibration performance of both flat beam and floor panel can be obtained using sandwich structures instead of free layer surface damping treatments with a less weight addition. Furthermore, the damping effect of sandwich structures on sound transmission loss of complex shaped panels like floor panel is investigated. A 2D flat and curved panel representing the floor panel of FIAT Car model are analysed in a very large frequency range. Four different loss factors are applied on these panels and it is seen that, until it reaches damping controlled region, damping has a very little effect on TL of flat panels but has an obvious damping effect on TL of curved panels. However in that region, damping has an increasing effect on TL of both flat and curved panels.
8

Acoustic properties of novel multifunctional sandwich structures and porous absorbing materials / Propriétés acoustiques de nouvelles structures sandwich multifonctionnelles et de matériaux absorbants poreux

Meng, Han 13 March 2018 (has links)
La mise en oeuvre de matériaux acoustiques est une méthode efficace et très utilisée pour réduire le bruit le long de sa propagation. Les propriétés acoustiques de nouvelles structures sandwich multifonctionnelles et de matériaux absorbants poreux sont étudiées dans la thèse. Les principales contributions de la thèse sont les suivantes: Les panneaux sandwich ont généralement d'excellentes propriétés mécaniques et un bon indice de perte en transmission sonore (STL), mais aucune capacité d'absorption acoustique. De nouvelles structures sandwich multifonctionnelles sont développées en intégrant des microperforations et des matériaux absorbants poreux aux panneaux sandwich ondulés et en nid d’abeilles conventionnels, structurellement efficaces pour obtenir de bons STL et de bonnes absorptions en basses fréquences. Le coefficient d'absorption acoustique (SAC) et la perte en transmission (STL) des panneaux sandwich ondulés sont évalués numériquement et expérimentalement en basse fréquence pour différentes configurations de perforations. Les modèles éléments finis (EF) sont construits en tenant compte des interactions vibro-acoustiques sur les structures et des dissipations d'énergie, visqueuse et thermique, à l'intérieur des perforations. La validité des calculs FE est vérifiée par des mesures expérimentales avec les échantillons testés obtenus par fabrication additive. Par rapport aux panneaux sandwich ondulés classiques sans perforation, les panneaux sandwich perforés (PCSPs) avec des perforations dans leur plaque avant présentent non seulement un SAC plus élevé aux basses fréquences, mais aussi un meilleur STL, qui en est la conséquence directe. L'élargissement des courbes des indices d’absorption et de transmission doit être attribué à la résonance acoustique induite par les micro-perforations. Il est également constaté que les PCSPs avec des perforations dans les plaques avant et les parois internes onduleés ont les fréquences de résonance les plus basses de tous les PCSPs. En outre, les performances acoustiques des panneaux sandwich en nid d'abeilles avec une plaque avant microperforée sont également examinées. Un modèle analytique est présenté avec l'hypothèse que les déplacements des deux plaques sont identiques aux fréquences inférieures à la fréquence de résonance des plaques. Le modèle analytique est ensuite validé par des modèles d'éléments finis et des résultats expérimentaux existants. Contrairement aux panneaux sandwich en nid d'abeilles classiques qui sont de piètres absorbeurs de bruit, les sandwichs en nid d'abeilles perforés (PHSPs) conduisent à un SAC élevé aux basses fréquences, ce qui entraîne en conséquence un incrément dans le STL basse fréquence. Les influences de la configuration du noyau sont étudiées en comparant les PHSPs avec différentes configurations de noyaux en nids d'abeilles. […] / Implementation of acoustic materials is an effective and popular noise reduction method during propagation. Acoustic properties of novel multifunctional sandwich structures and porous absorbing materials are studied in the dissertation. The main contributions of the dissertation are given as, Sandwich panels generally have excellent mechanical properties and good sound transmission loss (STL), but no sound absorption ability. Novel multifunctional sandwich structures are developed by integrating micro perforations and porous absorbing materials to the conventional structurally-efficient corrugated and honeycomb sandwich panels to achieve good SAC and STL at low frequencies. Low frequency sound absorption and sound transmission loss (STL) of corrugated sandwich panels with different perforation configurations are evaluated both numerically and experimentally. Finite element (FE) models are constructed with considerations of acousticstructure interactions and viscous and thermal energy dissipations inside the perforations. The validity of FE calculations is checked against experimental measurements with the tested samples provided by additive manufacturing. Compared with the classical corrugated sandwich panels without perforation, the perforated corrugated sandwich panels (PCSPs) with perforations in its face plate not only exhibits a higher SAC at low frequencies but also a better STL as a consequence of the enlarged SAC. The enlargement of SAC and STL should be attributed to the acoustical resonance induced by the micro perforations. It is also found that the PCSPs with perforations in both the face plates and corrugated cores have the lowest resonance frequencies of all the PCSPs. Besides, the acoustic properties of honeycomb sandwich panels with microperforated faceplate are also explored. An analytical model is presented with the assumption that displacements of the two faceplates are identical at frequencies below the faceplate resonance frequency. The analytical model is subsequently verified by finite element models and existing experimental results. Unlike classical honeycomb sandwich panels which are poor sound absorbers, perforated honeycomb sandwiches (PHSPs) lead to high SAC at low frequencies, which in turn brings about increment in the low frequency STL. Influences of core configuration are investigated by comparing PHSPs with different honeycomb core configurations. In order to enlarge the SAC bandwidth of perforated sandwich panels, porous absorbing materials are added to the cores of novel perforated sandwich panels. FE models are set up to estimate the SAC and STL of perforated sandwich panels with porous materials. Results show that perforated sandwich panels with porous material can provide SAC with broader bandwidth and lower resonance frequency than that without porous materials. Whereas the peak values in the SAC and STL curves are reduced due to the weakened acoustical resonance by the porous materials. […]
9

Active Control of Noise Through Windows

Lane, Jeremy David January 2013 (has links)
Windows are a weakness in building facade sound transmission loss (STL). This coupled with the detrimental effects of excessive noise exposure on human health including: annoyance, sleep deprivation, hearing impairment and heart disease, is the motivation for this investigation of the STL improvements active noise control (ANC) of windows can provide. Window speaker development, ANC window experiments and analytical modelling of ANC windows were investigated. Five different window speaker constructions were characterised then compared with a previously developed window speaker. ANC window testing used three different ANC configurations and was performed in two different environments, one with a reverberant receiving room, and the other with an anechoic receiving room. Optimisation of ANC systems with particular control source locations was the aim of the modelling. This enabled comparison with the ANC window tests and would aid in further development of ANC windows. Window speaker constructions were characterised by sound pressure level (SPL) measurements performed in an anechoic room. These measurements were made in a way that enabled comparison with the previously developed window speaker. Total sound energy reduction calculations were used to determine the relative performance of the tested ANC windows. An STL model, based on a modal panel vibration model, was initially created and verified against published STL data before it was expanded to include ANC control sources. The model was used to simulate the performed anechoic environment tests and an ideal ANC case.
10

Meso-macro approach for modeling the acoustic transmission through sandwich panels / Approches méso-macro pour la modélisation de la transmission acoustique des sandwiches

Zergoune, Zakaria 03 December 2016 (has links)
La modélisation du comportement vibroacoustique en flexion des structures sandwich est devenue aujourd’hui de plus en plus d’un grand intérêt dans les différents secteurs industriels. Cette tendance est principalement due aux propriétés mécaniques avantageuses des structures sandwich. L’un des principaux avantages de ce type de structures réside principalement dans le rapport rigidité-poids élevé. En revanche, acoustiquement la diminution de la masse du panneau avec une rigidité élevée conduit à un confort acoustique insatisfait. Pour cette raison, il y a une demande croissante pour des approches de modélisation du comportement vibroacoustique des structures sandwich avec une précision maximale. La présente thèse propose une approche méso-macro basée sur une méthode numérique pour la prédiction des caractéristiques dynamiques des structures sandwich. La méthode est principalement utilisée pour résoudre le problème de transparence acoustique considéré dans ce projet de thèse. Le travail présenté porte principalement sur la topologie du coeur du sandwich pour traiter le problème abordé. Le principal avantage du modèle proposé réside dans les effets du cœur prises en compte telle que l’effet du cisaillement et celle de l’orthotropie du panneau sandwich. L’approche de modélisation proposée est basée sur la méthode des éléments finis ondulatoire, qui combine la méthode des éléments finis classique et la théorie des structures périodiques. La structure sandwich a été modélisée comme un guide des ondes tridimensionnelles qui garde absolument les informations à l’échelle mésoscopique du panneau modélisé. La fréquence de transition définie la fréquence à laquelle le cisaillement du coeur devient important. Cette fréquence spéciale a été identifié via deux méthodes numériques. Une expression de transmission acoustique à travers un panneau sandwich a également été dérivée. Ensuite, une étude paramétrique a été menée dans le but de révéler l’effet des différents paramètres géométriques sur les indicateurs vibroacoustiques. / Prediction of the flexural vibroacoustic behavior of honeycomb sandwich structures in the low-mid frequency is nowadays becoming of high interest in different industrial sectors. This trend is mainly owing to the advantageous mechanical properties of the sandwich structures. One of the main advantages of this kind of structures lies principally in the high stiffness-to-weight ratio. Even though, acoustically the decrease of the panel mass with a high stiffness leads to an unsuitable acoustic comfort. For this reason, there is an increasing demand for approaches modeling the vibroacoustic behavior of the sandwich structures with a maximum accuracy. The present thesis deals with a meso-macro approach based on a numerical method for modeling the vibroacoustic behavior of sandwich structures. The modeling description is mainly used to address the acoustic insulation problem considered in the thesis. The presented work focuses on the topology of the sandwich core to treat the addressed problem. The main advantage of the proposed model is that it takes into account the core shear and panel orthotropic effects. The modeling approach suggested here is based on the wave finite element method (WFE method), which combines the standard finite element method and the periodic structure theory. The sandwich structure has been modeled as a tridimensional waveguide which holds absolutely the meso-scale information of the modeled panel. The transition frequency, which indicates the frequency at which the core shear becomes important, was identified via two different numerical methods. An expression of the acoustic transmission for an equivalent isotropic sandwich panel was also derived. A parametric study was then conducted with a goal of revealing the effect of the geometric parameters of the sandwich core on the vibroacoustic indicators.

Page generated in 0.1153 seconds