Spelling suggestions: "subject:"cource couting protocol"" "subject:"cource couting aprotocol""
1 |
Design and evaluation of security mechanism for routing in MANETs : elliptic curve Diffie-Hellman cryptography mechanism to secure Dynamic Source Routing protocol (DSR) in Mobile Ad Hoc Network (MANET)Almotiri, Sultan H. January 2013 (has links)
Ensuring trustworthiness through mobile nodes is a serious issue. Indeed, securing the routing protocols in Mobile Ad Hoc Network (MANET) is of paramount importance. A key exchange cryptography technique is one such protocol. Trust relationship between mobile nodes is essential. Without it, security will be further threatened. The absence of infrastructure and a dynamic topology changing reduce the performance of security and trust in mobile networks. Current proposed security solutions cannot cope with eavesdroppers and misbehaving mobile nodes. Practically, designing a key exchange cryptography system is very challenging. Some key exchanges have been proposed which cause decrease in power, memory and bandwidth and increase in computational processing for each mobile node in the network consequently leading to a high overhead. Some of the trust models have been investigated to calculate the level of trust based on recommendations or reputations. These might be the cause of internal malicious attacks. Our contribution is to provide trustworthy communications among the mobile nodes in the network in order to discourage untrustworthy mobile nodes from participating in the network to gain services. As a result, we have presented an Elliptic Curve Diffie-Hellman key exchange and trust framework mechanism for securing the communication between mobile nodes. Since our proposed model uses a small key and less calculation, it leads to a reduction in memory and bandwidth without compromising on security level. Another advantage of the trust framework model is to detect and eliminate any kind of distrust route that contain any malicious node or suspects its behavior.
|
2 |
Design and Evaluation of Security Mechanism for Routing in MANETs. Elliptic Curve Diffie-Hellman cryptography mechanism to secure Dynamic Source Routing protocol (DSR) in Mobile Ad Hoc Network (MANET).Almotiri, Sultan H. January 2013 (has links)
Ensuring trustworthiness through mobile nodes is a serious issue. Indeed, securing the routing protocols in Mobile Ad Hoc Network (MANET) is of paramount importance. A key exchange cryptography technique is one such protocol. Trust relationship between mobile nodes is essential. Without it, security will be further threatened. The absence of infrastructure and a dynamic topology changing reduce the performance of security and trust in mobile networks.
Current proposed security solutions cannot cope with eavesdroppers and misbehaving mobile nodes. Practically, designing a key exchange cryptography system is very challenging. Some key exchanges have been proposed which cause decrease in power, memory and bandwidth and increase in computational processing for each mobile node in the network consequently leading to a high overhead. Some of the trust models have been investigated to calculate the level of trust based on recommendations or reputations. These might be the cause of internal malicious attacks.
Our contribution is to provide trustworthy communications among the mobile nodes in the network in order to discourage untrustworthy mobile nodes from participating in the network to gain services.
As a result, we have presented an Elliptic Curve Diffie-Hellman key exchange and trust framework mechanism for securing the communication between mobile nodes. Since our proposed model uses a small key and less calculation, it leads to a reduction in memory and bandwidth without compromising on security level. Another advantage
of the trust framework model is to detect and eliminate any kind of distrust route that contain any malicious node or suspects its behavior.
|
3 |
Efficient Bandwidth Constrained Routing Protocols For Communication NetworksHadimani, Vijayalakshmi 05 1900 (has links)
QoS routing is one of the major building blocks for supporting QoS in communication networks and, hence, a necessary component of future communication networks. Bandwidth- Constrained Routing Algorithm (BCRA) may help to satisfy QoS requirements such as end-to-end delay, delay-jitter etc when WFQ-like (Weighted Fair Queuing) scheduling mechanisms are deployed. The existing algorithms for bandwidth constrained routing suffer from high message overhead and have a high computational and space complexity. The work presented in the thesis, therefore, focuses on the different techniques that an be used to reserve bandwidth for a unicast connection with low protocol overhead in terms of number of messages. We have compared the performance of the proposed routing algorithms using simulation studies with other bandwidth constrained routing algorithms. The call blocking ratio and message overhead have been used as the performance metric to compare the proposed algorithm with the existing ones.
We present three source routing algorithms for unicast connections satisfying the band- width requirement. The first two routing algorithms are based on the partitioning of the network. The link-state broadcasts are limited to the partition. In the first algorithm, the source node queries the other partitions for the state information on a connection request and computes the path based on the information received from the other partitions. The second algorithm is based on state aggregation. The aggregated state of other partitions is maintained at every node. The source node finds a feasible path based on the aggregated information. The path is expanded in every partition, if required, at the time of resource reservation. The third QoS routing algorithm uses the Distance Vector Tables to find a route for a connection. If the shortest path satisfies the bandwidth requirement, then it is selected; otherwise a random deviation is taken at the point where bandwidth requirement is not satisfied and shortest path algorithm is again followed. In all the three algorithms presented, the packets carry the entire path information to the destination node. Therefore, no per connection information is required to be maintained at the intermediate nodes. Simulation results indicate that the proposed algorithms indeed help educing the protocol overhead considerably, and at the same time they give comparable or better performance in terms of resource utilization across a wide range of workloads.
|
Page generated in 0.0844 seconds