Spelling suggestions: "subject:"cource reconstruction method"" "subject:"bource reconstruction method""
1 |
The use of the source reconstruction method for antenna characterizationNarendra, Chaitanya 14 April 2016 (has links)
This thesis studies the use of the Source Reconstruction Method (SRM) to characterize antennas. The SRM calculates equivalent sources/currents on an arbitrarily shaped reconstruction surface to represent the original antenna. This is done by enforcing that the original antenna and equivalent currents radiate the same field at user selected measurement locations. These equivalent currents spatially characterize the original antenna because they can be used in direct radiation problems to obtain field estimates anywhere outside the reconstruction surface, including the far-field.
First a spherical SRM algorithm is implemented and the diagnostic capabilities of the SRM are also synthetically shown through an example with an array of elementary dipoles. It is then shown that the SRM compares well to pre-existing commercial antenna software over different frequencies and can also be used successfully with a partial dataset. It is demonstrated that the equivalent currents can also provide meaningful information with experimental data.
Next the hierarchical matrix framework is studied in conjunction with the SRM to decrease the algorithm's memory requirement and increase the speed of execution. It is shown that it is beneficial to use the hierarchical matrix framework with the SRM when using Love's condition or with measured data on a surface very close to the reconstruction surface.
The SRM is then used to obtain incident field estimates in microwave imaging systems. Using a 2D transverse magnetic framework, we show that even with the limited data available in typical microwave tomography setups the SRM can produce incident field estimates in the imaging domain. These estimates are then used along with an MR-GNI algorithm to image synthetic and experimental objects with uncalibrated measured data. / October 2016
|
2 |
Antenna characterization using phaseless near-field antenna measurementsBrown, Trevor 12 September 2016 (has links)
This thesis focuses on the application of electromagnetic inverse source techniques to characterize antennas using phaseless (amplitude-only) near-field (NF) measurement data. Removing the need to measure phase reduces the overall cost of the measurement apparatus since simple power meters can be used instead of expensive vector network analyzers. It has also been shown in the literature that a phaseless approach can improve the accuracy of the calculated far-field (FF) pattern in the presence of probe positioning errors compared to the amplitude-and-phase approach. A brief discussion on the state-of-the-art methods for characterizing antennas using phaseless near-field measurement data is presented. Two general approaches used most often to perform near-field to far-field (NF-FF) transformations, namely modal expansion and source reconstruction, are explained in detail for scenarios with and without phase information. A phaseless source reconstruction method (SRM) is the primary focus of this work. The SRM is an application of an electromagnetic inverse source technique and therefore, the complexities of solving the associated ill-posed inverse source problem are discussed. The application of the SRM to spherical and planar measurement geometries are presented along with the concerns regarding regularization resulting from discretizing the ill-posed system. A multiplicative regularization (MR) scheme originally developed for inverse scattering is adapted to suit the nonlinear cost functional for the phaseless planar measurement case and the mathematical framework is derived in detail. The resulting MR-SRM is fully automated and incorporates adaptive regularization. The developed algorithms are evaluated using several examples with synthetic phaseless NF data demonstrating the benefits and limitations of the source reconstruction method and the multiplicative regularization scheme. The application of the SRM to antenna diagnostics using phaseless NF data is also shown. Finally, the developed planar algorithms are tested with experimentally collected phaseless measurement data to demonstrate their potential as suitable antenna characterization techniques that can be of interest to the antenna measurement community. / October 2016
|
Page generated in 0.1163 seconds