• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de dispositifs électroniques moléculaires à l'aide de modèles simples

Rocheleau, Philippe 05 1900 (has links)
Cette thèse en électronique moléculaire porte essentiellement sur le développement d’une méthode pour le calcul de la transmission de dispositifs électroniques moléculaires (DEMs), c’est-à-dire des molécules branchées à des contacts qui forment un dispositif électronique de taille moléculaire. D’une part, la méthode développée vise à apporter un point de vue différent de celui provenant des méthodes déjà existantes pour ce type de calculs. D’autre part, elle permet d’intégrer de manière rigoureuse des outils théoriques déjà développés dans le but d’augmenter la qualité des calculs. Les exemples simples présentés dans ce travail permettent de mettre en lumière certains phénomènes, tel que l’interférence destructive dans les dispositifs électroniques moléculaires. Les chapitres proviennent d’articles publiés dans la littérature. Au chapitre 2, nous étudions à l’aide d’un modèle fini avec la méthode de la théorie de la fonctionnelle de la densité de Kohn-Sham un point quantique moléculaire. De plus, nous calculons la conductance du point quantique moléculaire avec une implémentation de la formule de Landauer. Nous trouvons que la structure électronique et la conductance moléculaire dépendent fortement de la fonctionnelle d’échange et de corrélation employée. Au chapitre 3, nous discutons de l’effet de l’ajout d’une chaîne ramifiée à des molécules conductrices sur la probabilité de transmission de dispositifs électroniques moléculaires. Nous trouvons que des interférences destructives apparaissent aux valeurs propres de l’énergie des chaînes ramifiées isolées, si ces valeurs ne correspondent pas à des états localisés éloignés du conducteur moléculaire. Au chapitre 4, nous montrons que les dispositifs électroniques moléculaires contenant une molécule aromatique présentent généralement des courants circulaires qui sont associés aux phénomènes d’interférence destructive dans ces systèmes. Au chapitre 5, nous employons l’approche « source-sink potential » (SSP) pour étudier la transmission de dispositifs électroniques moléculaires. Au lieu de considérer les potentiels de sources et de drains exactement, nous utilisons la théorie des perturbations pour trouver une expression de la probabilité de transmission, T(E) = 1 − |r(E)|2, où r(E) est le coefficient de réflexion qui dépend de l’énergie. Cette expression dépend des propriétés de la molécule isolée, en effet nous montrons que c’est la densité orbitalaire sur les atomes de la molécule qui sont connectés aux contacts qui détermine principalement la transmission du dispositif à une énergie de l’électron incident donnée. Au chapitre 6, nous présentons une extension de l’approche SSP à un canal pour des dispositifs électroniques moléculaires à plusieurs canaux. La méthode à multiples canaux proposée repose sur une description des canaux propres des états conducteurs du dispositif électronique moléculaire (DEM) qui sont obtenus par un algorithme auto-cohérent. Finalement, nous utilisons le modèle développé afin d’étudier la transmission du 1-phényl-1,3-butadiène branché à deux rangées d’atomes couplées agissant comme contacts à gauche et à la droite. / This thesis is on molecular electronics concentrates mostly on the development of a method for the calculation of the transmission probability of molecules that are connected to contacts. On the one hand, this method aims at bringing a different point of view among the other methods for such calculations. On the other hand, it allows the integration of already developed theoretical tools in a rigorous manner, which increases the quality of the calculations. The work presented here often contains simple examples that shine some light on phenomena, such as the destructive interference, in molecular electronic devices. The chapters are from articles already published in the litterature. In chapter 2, we study a molecular quantum dot using a finite model with Kohn-Sham density functional theory. Moreover, using an implementation of the Landauer formula, we calculate the conductance of the quantum dot. We find that the electronic structure and molecular conductance depend strongly on the exchange and correlation functional employed. In chapter 3, we discuss the effect of adding a side chain to conducting molecules on the transmission probability of molecular electronic devices. We find that destructive interferences appear approximately at the energy eigenvalues of the isolated side chain, if these values do not correspond to localized states far away from the conductor. In chapter 4, we show that molecular electronic devices containing an aromatic molecule generaly possess circular currents which are associated with destructive interference phenomena in these systems. In chapter 5, we use the source-sink potential (SSP) approach to study the electronic transmission of some devices. Instead of considering the source and sink potentials exactly, we use perturbation theory to find an expression for the transmission probability T(E) = 1 − |r(E)|2 that depends on the properties of the bare molecule, where r(E) is the energy-dependent reflection coefficient. We show that in the first-order, it is the orbital density on the atoms connected to the contacts that largely determines the transmission probability for a given incoming electron energy. In chapter 6, we present an extension of the single channel source-sink potential approach for molecular electronic devices to multiple channels. The proposed multichannel method relies on an eigenchannel description of the conducting states of the molecular electronic device, which are obtained by a self-consistent algorithm. We use the model to study the transport of the 1-phenyl-1,3-butadiene molecule connected to two coupled rows of atoms that act as contacts on the left and right sides.
2

Étude de dispositifs électroniques moléculaires à l’aide de la méthode du potentiel source-puits

Giguère, Alexandre 11 1900 (has links)
Les travaux de la présente thèse porteront sur le raffinement du modèle du potentiel source-puits (SSP) proposé par Ernzerhof en 2006. Cette méthode permet de calculer la conductance qualitative de dispositifs électroniques moléculaires (MEDs). Dans la première partie de ce travail, le modèle SSP sera amélioré en y intégrant la description de l’interaction d’un champ électromagnétique fort avec le MED. Des expériences récentes ont démontré que des molécules pouvaient interagir fortement avec des plasmons de polaritons de surface (SPP). Ces interactions créent des états liés électron-SPP qui seront exploités pour contrôler la conductance de MEDs. Des formules analytiques expliqueront l’impact des paramètres physiques de ces circuits optoélectroniques sur la conductance de ceux-ci. Dans le même esprit, la seconde partie de cette thèse inclura les interactions électron-noyau au modèle SSP afin de décrire entre autres le courant décohérent d’un MED. Dans ce modèle les interactions noyau-électron seront décrites à partir de l’approximation harmonique et intégrées à l’hamiltonien de façon non-pertubative. Des formules analytiques seront dérivées afin de décrire la conductance de tels MEDs. Finalement, les conséquences du bris de la symétrie de la parité et du temps de la matrice hamiltonienne de la méthode SSP seront découvertes dans la densité spectrale et les fonctions d’ondes des MEDs. / The purpose of this thesis is to expand the scope of the source-sink potential (SSP) method originally proposed by Ernzerhof in 2006. The SSP model allows the computation of the qualitative conductance of molecular electronics devices (MEDs). In the first part of this work, the SSP model will be improved by including the description of interaction between the strong electromagnetic field and the MED. Recent experiments have shown that molecules could strongly interact with surface plasmon of polaritons (SPPs). These interactions will create so-called dressed states that can be used to control the conductance of MEDs. In the second part of this work, the SSP model will be augmented by including electron-nucleus interactions to describe the inelastic current. In this model, the electron-nuclueus interaction will be account for with the help of the harmonic approximation and incorporated into the hamiltonian non-pertubatively. Analytical formulas will be derived that will allow one to understand the impact of physical parameters on the conductance of MEDs. Lastly, the impact of the parity and time symmetry breaking of the SSP matrix hamiltonian will be studied and related to change in the spectral density and in the eigenfunctions of the MEDs.

Page generated in 0.0747 seconds