Spelling suggestions: "subject:"cources dde neutrons"" "subject:"cources dee neutrons""
1 |
Optimisation de combinaisons de faisceau et de cible pour les systèmes de réacteurs hybrides et pour la production de faisceaux radioactifs par fissionRidikas, D. 28 October 1999 (has links) (PDF)
Ce travail de thèse se compose d'une partie théorique et d'une partie expérimentale. Nous combinons et utilisons les codes de transport de haute énergie LAHET, de basse énergie MCNP et le code d'activation CINDER. Nos calculs de validation des codes montrent que LAHET néglige la dissociation coulombienne du deutéron. En ajoutant cette contribution, nous obtenons un bon accord avec les données. Nous concluons également que LAHET reproduit bien la production d'isotopes si le modèle de fission ORNL est utilise pour des cibles avec z > 90. Le modèle de fission RAL donne des distributions isotopiques trop larges et ne reproduit pas les données en valeur absolue. Nous examinons différentes combinaisons de faisceaux (projectile, énergie), de cibles de spallation et de cœur de réacteur pour la production de neutrons, l'amplification d'énergie et la production de faisceau radioactif par fission. Nous montrons que les réactions (d, xn) pourraient apporter un certain nombre d'avantages importants, comparées aux réactions (p, xn). Nous concluons que l'utilisation de deutérons au lieu de protons devrait conduire a des intensités de faisceau primaire plus élevées, a un prix réduit du système et a moins de problèmes de radioprotection. Dans le projet SPIRAL Phase-II au GANIL, nous proposons la combinaison d(100 MeV)+Be→xn+U pour une production optimum de noyaux riches en neutron dans la région de masse 75≤A≤160. Cependant, la production de gaz de tritium dans la cible de conversion devrait être soigneusement étudiée. Nous prouvons également que l'utilisation des cibles de conversion de métal plus lourd peut poser des problèmes de radioprotection plus graves. Notre travail expérimental est directement relié aux investigations théoriques. Nous mesurons les distributions en énergie de protons produits par des deutérons de 100 et de 200 MeV sur 8 cibles minces (Be, C, Al, Ni, Nb, Ta, Pb et U) et dans la région angulaire 8° ≤ θp ≤ 120°. Les deux expériences ont été réalisées au LNS (Saclay, france) et au NAC (Faure, Afrique du Sud). Les données de bonne qualité (10% en valeur absolue et un seuil en énergie de 4-8 MeV) sont bien reproduites par le modèle LAHET amélioré pour les réactions (d, xp) et, par conséquent, pour les réaction (d, xn).
|
2 |
Production de faisceaux d'ions radioactifs multicharges pour SPIRAL : Etudes et realisation du premier ensemble cible-sourceMaunoury, Laurent 13 November 1998 (has links) (PDF)
Cette thèse s'inscrit dans le cadre du projet SPIRAL qui consiste à produire puis à accélérer un faisceau d'ions multichargés. Ce travail a porté essentiellement sur la partie production et ionisation du faisceau d'ions radioactifs. Un premier ensemble cible-source (NANOGAN II) a été étudié, réalisé puis testé. Il est destiné uniquement à la production de faisceau d'ions radioactifs multichargés de type gaz. Des tests "hors ligne" et "en ligne" ont montré que cet ensemble répond au cahier des charges du projet SPIRAL et qu'il est fin prêt à être mis en fonctionnement dans la casemate de production. A partir de ces tests, les intensités disponibles des futurs faisceaux de SPIRAL ont été calculées. Une étude détaillée de la diffusion d'un atome dans une cible de carbone a été faite. L'expression de l'efficacité de diffusion, à partir des équations de la diffusion (lois de Fick), a été déduite. Cette efficacité dépend des paramètres suivants : la température, la taille des grains composants la cible, les coefficients d'Arrhénius et la période radioactive. Le développement de trois méthodes expérimentales et la confrontation d'expérience/théorie ont permis de comprendre ce processus dans la cible de production et de déduire les coefficients d'Arrhénius pour les gaz rares. Une autre étude des cibles de production est présentée. Elle concerne la distribution de température permettant leur utilisation pendant plus d'un mois à une température de 2400 K. Deux développements ont été étudiés pour le futur de SPIRAL. Le premier (1+/n+) consiste en la transformation d'un faisceau monochargé en un faisceau multichargé grâce à une source R.C.E. Ceci permettra d'utiliser la source multichargé hors de la casemate de production et ainsi d'avoir des sources monochargées adaptées à de nombreux types d'éléments. L'autre développement (SPIRAL-II) est destiné à la production d'atomes radioactifs riches en neutrons crées par la fission de l'uranium induite par des neutrons rapides. Le faisceau de neutron est produit par le stripping/break-up d'un faisceau de deutons dans un convertisseur. Cette solution, très prometteuse, est en cours d'étude et fait partie d'un programme de Recherche Européen.
|
Page generated in 0.0844 seconds