Spelling suggestions: "subject:"soybean"" "subject:"oybean""
381 |
The Brazilian soybean industry an econometric framework for policy impact analysis /Bahiigwa, Godfrey. January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 171-174). Also available on the Internet.
|
382 |
An ultrastructural study of the symbiotic relationships of four strains of Bradyrhizobium japonicum with glycine maxHuber, Mary Christine, January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 456-600). Also available on the Internet.
|
383 |
Tile Drainage, Beds, and Fe-EDDHA Application Effect on Soybean ProductionHolmes, Lucas Connor January 2018 (has links)
Eastern North Dakota has received excessive rainfall events since 1995, and soils are prone to waterlogging. This research evaluated the effects of subsurface tile drainage, raised beds, and iron-chelate (Fe-EDDHA) seed-application on iron-deficiency chlorosis (IDC) incidence in soybean [Glycine max (L.) Merr.], soybean growth, and yield, across six environments during 2013 and 2014. Tile drainage without beds increased soybean yield and reduced IDC by 11%. Beds resulted in more vigorous plants with 9% more biomass and increased soybean yield by 6%. There was no yield advantage to using both tile and raised beds within the same field. The Fe-EDDHA reduced plant population and IDC expression, increased plant biomass, but did not result in a yield increase. Farmers are encouraged to consider utilizing raised beds as a means to mitigate excess water. Additional research is needed to determine the cause of lower established plant density after seed application with Fe-EDDHA. / Minnesota Soybean Research and Promotion Council / North Dakota Soybean Council / DuPont Pioneer
|
384 |
Nitrogen and moisture distributions under subirrigated soybeansPapadopoulos, Anastasios K. January 1994 (has links)
No description available.
|
385 |
Genetics of reactions to soybean mosaic virus in soybeanChen, Pengyin January 1989 (has links)
The genetic interactions among 9 soybean [<i>Glycine max</i> (L.) Merr.] cultivars and 6 strains of soybean mosaic virus (SMV) were investigated. The objectives were to identify genes and/or alleles conditioning resistant and necrotic reactions to SMV and to determine the genetic relationships among resistance genes from cultivars exhibiting differential responses to the SMV strains.
Seven SMV-resistant (R) cultivars (‘PI 486355’, ‘Suweon 97’, ‘PI 96983’, ‘Ogden’, ‘York’, ‘Marshall’, and ‘Kwanggyo’) were crossed in all combinations among each other and with susceptible (S) cultivars ‘Essex’ and ‘Lee 68’. F₂ populations and F₂-derived F₃ lines were inoculated in field with the SMV type strain Gl and in the greenhouse with the virulent strains G4, G5, G6, G7, and G7A.
All F₂ populations from R x S and necrotic (N) x S crosses having PI 96983, Ogden, York, Marshall, and Kwanggyo as either resistant or necrotic parents segregated 3R:1S and 3N:1S, respectively. F₂-derived F₃ progenies from R x S crosses exhibited an F₂ genotypic ratio of 1 homogeneous R : 2 segregating (3R:1S) : l homogeneous S. The results indicate that each of these five resistant parents has a single, dominant or partially dominant gene conditioning the resistant and necrotic reactions to SMV. No segregation for SMV reaction was evident in F₂ and F₃ generations from R x R, N x N, and S x S crosses among the five differential cultivars, indicating that the resistance genes in the five cultivars are alleles at a common locus. The alleles in PI 96983 and Ogden were previously labeled <i>Rsy</i> and <i>rsy<sup>t</sup></i>, respectively. Gene symbols, <i>Rsy<sup>y</sup></i>, <i>Rsy<sup>m</sup></i>, and <i>Rsy<sup>k</sup></i> are proposed for the resistance genes in York, Marshall, and Kwanggyo, respectively. It is also proposed that the gene symbol <i>rsy<sup>t</sup></i> be changed to <i>Rsy<sup>t</sup></i> to more accurately reflect its genetic relationship to the susceptible allele.
The R x S crosses with PI 486355 and Suweon 97 as resistant parents segregated 15R:1S in the F₂ and 7 (all R) : 4 (3R:1S) : 4 (15R:1S) : 1 (all S) in the F₃, indicating that each has two independent genes for resistance to SMV. The F₂ plants of PI 486355 x Suweon 97 showed no segregation for SMV reaction, suggesting that they have at least one gene in common. The crosses among all 7 resistant parents produced no susceptible segregates when inoculated with strain G1. It is concluded that the 7 resistant cultivars each have a gene or allele at the <i>Rsy</i> locus.
Data from the experiments furnished conclusive evidence that the necrotic reaction in segregating populations is highly associated with plants that are heterozygous for the resistance gene. / Ph. D.
|
386 |
Breeding gains diversity analysis and inheritance studies on soybean (Glycine max (L.) Merrill) germplasm in Zimbabwe.Mushoriwa, Hapson. 09 May 2014 (has links)
The soybean programme in Zimbabwe is over seventy years old. However, there is lack of
information on breeding gains, genetic diversity, heritability, genetic advance, combining
ability, gene action and relationships between grain yield and secondary traits available for
breeding. Therefore, the aim of the present study was to characterise the genetic diversity of
the available germplasm, determine gene action conditioning grain yield and estimate the
breeding gains that have been realised since the inception of the breeding programme.
Evaluation of 42 soybean genotypes for genetic diversity conducted during 2010/11 and
2011/12 cropping seasons, using phenotypic and molecular characterisation approaches,
revealed evidence of wide diversity among the genotypes. The phenotypic traits and SSR
markers assigned the soybean genotypes to 8 and 15 clusters respectively. The SSR
marker technique was more polymorphic, informative and highly discriminatory. The
clustering pattern and relatedness from SSR data was in agreement with the pedigree data
while the phenotypic clustering was divorced from pedigree data. Genotypes, G41 and G7;
G41 and G1; G41 and G42 were the most divergent; therefore, they could be utilized as
source germplasm in cultivar development and commercial cultivars.
Investigations on breeding gains involving 42 cultivars (representing a collection of all the
varieties that were released in Zimbabwe from 1940 to 2013) showed that improvement in
grain yield was slowing down. However, annual genetic gain was estimated to be 47 kg ha-1
year-1 representing an annual gain of 1.67%. Furthermore, grain yield ranged from 2785 to
5020 kg ha-1. Genotypes, G16, G15, G17, G1 and G42 exhibited superior performance in
grain yield and other agronomic traits and are therefore, recommended for utilisation in the
hybridisation programme. Seed protein concentration decreased by 0.02 year-1 while oil
increased by 0.02, 100 seed weight increased by 0.21 g year-1 over time. In addition, number
of days to 95% pod maturity and pod shattering increased by 0.35 and 0.38 days year-1
respectively while lodging declined by 0.31%. Results indicated that emphasis should be
refocused on grain yield to restore the original linear increase.
Assessment of the magnitude of GEI and stability of 42 released cultivars was done over 13
environments and two seasons using additive main effects and multiplicative interaction,
cultivar superiority and rank analyses. Results showed that environment and GEI captured
larger portion of the total sum of squares, which reveals the influence of the two factors on
grain yield, hence, the need for evaluating soybean genotypes in multi-environment trials
and over years. Further, the data revealed that GEI was of a crossover type because of
differential yield ranking of genotypes. The three stability parameters selected two
genotypes, G1 and G15, as the most productive, consistent and stable, thus they could be produced in diverse environments while G2, G4, G5, G7, G16, G40, G17, G18 and G31 were identified as unstable and suitable for specific adaptation.
Correlation and path analyses showed that grain yield was positively and significantly correlated with number of branches per plant, number of nodes per plant, shelling percentage, and number of days from 95% pod maturity to first pod shattering, implying that breeding and selection for these traits probably improved grain yield. Number of nodes per plant, plant height and 100 seed weight exhibited highest direct effects on grain yield while, number of nodes per plant and plant height presented the highest indirect effects on grain yield. These results demonstrated that number of nodes per plant and plant height could be recommended as reliable selection traits for developing high yielding genotypes of soybean. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
|
387 |
Genetic analyses for resistance to soybean rust (Phakopsora pachyrhiz) and yield stability among soybean genotypes in Kenya.Wanderi, Susan Wothaya. 31 October 2013 (has links)
Soybean (Glycine max (L.) Merr.) occupies an important position in the world economy of the feedstock of high quality protein and vegetable oils. However, its production is threatened by, Asian soybean rust (ASR), caused by the rust fungus Phakopsora pachyrhizi Syd. & P. Syd. This fungus is highly dependent on environmental conditions, has a wide range of hosts, and evolves rapidly into novel races, making it difficult to control. In addition, most commercial varieties are susceptible to rust, the rust has already developed resistance to triazole fungicides, and most small-scale farmers cannot afford expensive systemic fungicides to control the
disease. The use of resistant varieties is the most viable, long-term option to manage ASR, especially in the small-holder soybean farming sector. This study was therefore designed to undertake the following goals: (i) to identify farmers’ preferred varieties and desired traits, their knowledge of ASR, and other key constraints affecting soybean production in Kenya; (ii) to
evaluate soybean accessions for rust resistance, and to determine the correlation of rust resistance with other agronomic traits; (iii) to determine the mode of inheritance for ASR resistance and selected agronomic traits; and (iv) to determine yield stability of soybean advanced lines at multiple sites in Central and Eastern Kenya. To understand farmers’ preferred varietal characteristics, knowledge of ASR and other key constraints to soybean production, a survey was conducted using a structured questionnaire in the major soybean growing areas of Kenya. The farmers preferred local varieties because of their desirable characteristics, which included high yields, early maturity, drought tolerance and seed availability. Although the majority of the participating farmers expressed a willingness to grow improved varieties, financial limitations, seed unavailability and lack of information were the major barriers to their use of improved varieties. High yield, early maturity, adaptability and grain quality were the traits that most farmers sought in an ideal soybean variety. Knowledge of the cause of ASR was limited, and its occurrence was largely attributed to environmental factors, poor soil fertility conditions, poor agronomic practices, physiological maturity and specific species of weeds. Their investments in control methods were minimal due to a lack of technical knowledge, poor access to fungicides, and limited resources. Other constraints faced by soybean farmers included: lack of access to grain markets; lack of knowledge in processing and utilization of soybean grain; the unavailability of seeds; losses to pests and diseases; the lack of inputs such as fertilizers; frequent dry spells; and low yielding varieties. A total of 110 soybean accessions were evaluated for their rust reactions and correlations with selected agronomic traits. These included plant introductions possessing single rust resistant genes (Rpp1-4), tolerant lines, gene bank accessions, commercial varieties and advanced lines.
Soybean genotypes varied significantly in their reactions to rust severity, sporulation, lesion type and area under disease progress curve (AUDPC) values. Genotypes possessing Rpp4 (G10428) and Rpp2 (G8586) resistant genes, and non-characterized genotypes MAK BLD 11.3, GC 00138-29 and Namsoy 4M, were the most resistant accessions, as indicated by low rust
severity scores, low AUDPC values, red brown lesions and low sporulation scores. Other genotypes with known resistant genes including G7955 (Rpp3), G58 and Tainung 4 (Rpp1), a few tolerant lines, and one advanced line (BRS Sambaiba) were moderately resistant. All the other advanced lines, commercial varieties, gene bank accessions and collections from the
farmers’ fields were highly susceptible to rust. Rust severity was positively correlated with rust sporulation, indicating that reduction of sporulation made a significant contribution towards rust resistance. An F2 population was generated from a half diallel mating design, involving 4 resistant, 2
moderately resistant and 2 susceptible genotypes selected as parents. The F2 populations along with their parents were evaluated in two environments to determine the type of gene action for rust resistance and other quantitative traits in soybeans. The results revealed that both general combining ability (GCA) and specific combining ability (SCA) were significant for most of the traits studied, indicating that both additive gene action and non-additive gene action played a major role in the inheritance of rust resistance and selected agronomic traits. The GCA/SCA ratio was close to unity for rust severity, rust sporulation, days to flowering, days to
maturity and plant height. This indicated that additive gene action played a more significant role in the inheritance of these traits than non-additive gene action. Non-additive gene action was only predominant for soybean grain yield. Parental lines G10428, G8586 and Namsoy 4M were the best general combiners for improving rust resistance across the environments. The most promising parents for early flowering were G7955, G8586 and G58. Parent Maksoy 1N was the
best general combiner for early maturity while parents Maksoy 1N, G58, G7955 and Nyala contributed effectively towards reduced plant height.
Yield stability analysis was conducted for 30 genotypes in 6 environments, using additive main effects and multiplicative interaction (AMMI), genotype main effect and genotype x environment interaction (GGE) biplot analyses. Genotypes 916/5/19 and G7955 were identified as the high yielding and most stable across the environments. On the other hand, genotypes BRS MG46 and Sable were high yielding but unstable and specifically suitable for the environments EM2 and MW2, respectively (both environments have long rainy seasons). Environment EM2 was identified as the most discriminating and representative among the six environments.
Environments IG1 and MW1 (short rainy seasons) were less informative on genotypes tested, as confirmed by short environment vectors. Environment EM1 was better for discriminating genotypes but was a poor representative of the test environments, hence it should only be
utilized for developing specifically adapted genotypes. Further analysis using GGE biplot approach grouped the environments into three putative mega-environments in Central and Eastern Kenya. Overall, this study established the need to educate farmers on the cause of ASR, to develop
ASR resistant varieties, and to incorporate farmers’ desired traits in the breeding programme, especially by the use of participatory breeding approaches. The resistant and moderately resistant genotypes identified in this study could be used as sources of resistant genes to develop ASR resistant varieties in Kenya. This study also established that genetic improvement for ASR resistance and selected agronomic traits in soybeans is possible based on the use of recurrent selection breeding procedures that result in the accumulation of additive gene effects. Selection of late segregating generations would be effective for soybean grain yield
improvement. This study identified potential parents for ASR resistance and selected agronomic traits, but they require further breeding to improve on farmers’ desired traits. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
|
388 |
Molecular genetic analysis of host resistance to soybean mosaic virusYu, Yong Gang 01 February 2006 (has links)
Soybean mosaic virus (SMV), a potyvirus detected worldwide, can cause serious diseases in soybean (Glycine max L. Merr.). Host resistance to SMV conferred by a single dominant gene, Rsvl, was studied as a model to gain insights of plant virus resistance genes, and to facilitate the breeding of resistant cultivars. DNA restriction fragment length polymorphisms (RFLPs) and microsatellites (or simple sequence repeats, SSRs) were used as genetic markers to identify the chromosomal location of Rsvl1 in a cross between PI 96983 (resistant) and a susceptible cultivar. Twenty five RFLP and three SSR loci polymorphic between the parental lines were analyzed in 107 F, individuals. Genotypes of Rsv1 were determined by inoculating F2.3 progeny with SMV-G1. Genetic analysis revealed that one SSR (HSP176L) and two RFLP (pA186 and pK644a) markers are closely linked to Rsv1, with a distance of 0.5, 1.5, and 2.1 cM, respectively. The tight linkages of the three markers to Rsv1 were confirmed by SSR and RFLP analysis of three near isogenic lines (NILs) of Rsv1 derived from PI 96983 or Marshall.
The three Rsv1-linked markers were then used to screen 67 diverse soybean types. These marker loci showed a remarkably high level of polymorphism, indicating a possible association between disease resistance and rapid sequence divergence. At each Rsv1-linked marker locus, one SSR allele or RFLP haplotype is highly correlated with SMV resistance. These resistance markers, especially the SSR allele at HSP176L which can be detected by the polymerase chain reaction (PCR), may be useful for germplasm screening. The grouping of the 67 accessions according to their Rsv1-linked multilocus marker haplotypes agrees with available pedigree information. A set of differential cultivars known to contain Rsv1 clustered into putative Rsv1- carrying groups. Based on molecular marker analysis and previous inheritance studies, 37 of the 45 resistance accessions probably derive their resistance from Rsv1. The remaining eight accessions include Columbia (Rsv3), and the other potentially diverse resistance sources.
A heat shock protein (HSP) multigene family, HSP176L included, was analyzed for its positional proximity to the Rsv1 gene cluster. A technique termed amplified sequence length polymorphism (ASLP) was developed to convert known DNA sequences to PCR-based genetic markers. Among six pairs of HSP primers used, two (HSP175E and 185C) detected ASLPs between the parents, and segregated in the F₂ population with a size of 174. HSP175E was found to be closely-linked (0.7 cM) to HSP176L, both of which are Class I small HSP genes. HSP185C, however, was mapped to a different linkage group, suggesting that it may belong to another family. ADR11, a member of auxin down-regulated (ADR) multigene family, is known to be linked to HSP173B, also a Class I gene but not mappable in this population. ASLP analysis of ADR11 in a set of Rsv1 NILs indicates that it is linked to Rsv1, and ADR11 co-segregates with HSP175E in the F, population. Thus, the Class I small HSP multigene family including HSP176L, 175E, and 173B, and possibly a family of ADR genes, is located near the Rsvi resistance gene cluster. / Ph. D.
|
389 |
Varietal response and effects of different sources of zinc on soybean growth and yieldBello, Adetunji B January 2011 (has links)
Typescript. / Digitized by Kansas Correctional Industries
|
390 |
Influence of etched seedcoats on the durability of soybean seed during conditioning, weatherability in the field, and the effect of cultural practices on the incidence of etched seedcoats in a seedlotBurchett, Clyde Alan January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
|
Page generated in 0.0789 seconds