1 |
Phenethyl Isothiocyanate (PEITC) Decreases Specficity Protein (SP) Tanscription Factors through an ROS-dependent MechanismGuthrie, Aaron S 1987- 14 March 2013 (has links)
Isothiocyanates (ITCs) are phytochemicals highly expressed in cruciferous vegetables and these compounds are associated with the decreased incidence of cancers in populations consuming high levels of cruciferous vegetables. Several individual ITCs including phenethyl isothiocyanate (PEITC) inhibit tumor growth and angiogenesis and their anticancer activity has been linked to inhibition of cancer cell growth, survival and inflammation (NFB). It has also been demonstrated that PEITC induces reactive oxygen species (ROS) and that ROS is largely responsible for PEITC-induced cell death. To confirm PEITC-induced cancer cell death we have investigated the mechanism of action of PEITC in pancreatic cancer cell lines and PEITC induces ROS and inhibits growth and induces apoptosis (PARP cleavage). In addition, PEITC downregulates expression of several gene products including vascular endothelial growth factor (VEGF), cyclin D1 (CD1), Bcl2 and survivin and these have previously been reported in other studies. However, since these gene products are all regulated by specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4, which are overexpressed in cancer cells and tumors, we investigated the effects of PEITC on Sp proteins and observed that PEITC decreased expression of Sp1, Sp3 and Sp4 in pancreatic cancer cells. These results demonstrate for the first time that an important underlying mechanism of action of ITCs likely involves targeting Sp transcription factors through an ROS-mediated mechanism and the pathways required for ITC-induced Sp downregulation were investigated and the results are presented in this paper.
|
2 |
New Mechanism Based Anticancer Drugs for Treatment of Pancreatic and Bladder CancersJutooru, Indira Devi 2010 May 1900 (has links)
Methyl 2-cyano-3,11-dioxo-18b-olean-1,12-dien-30-oate (CDODA-Me) is a synthetic triterpenoid that inhibits growth of Panc1 and Panc28 pancreatic cancer cell lines and activates peroxisome proliferator-activated receptor B (PPARB)-dependent transactivation in these cells. CDODA-Me has also induced p21 and p27 protein expression and downregulated cyclin D1; however, these responses were receptor-independent. CDODA-Me induced apoptosis, which was accompanied by receptor-independent induction of the proapoptotic proteins early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), and activating transcription factor-3 (ATF3). Induction of NAG-1 in Panc28 cells was p38-mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3-K)-dependent, but Egr-1-independent, whereas induction in Panc1 cells was associated with activation of p38-MAPK, PI3-K and p42-MAPK and was only partially Egr-1-dependent.
Specificity protein (Sp) transcription factors Sp1, Sp3 & Sp4 are overexpressed in multiple tumor types and negative prognostic factors for survival. Since Sp proteins regulate genes associated with survival (survivin), angiogenesis [vascular endothelial growth factor and its receptors] and growth [cyclin D1, epidermal growth factor receptor], research in this laboratory has focused on development of anticancer drugs that decrease Sp protein expression. Arsenic trioxide, curcumin, 2-cyano-3,12-dioxoleana-1,9-dien-28-oic acid (CDDO), CDDO-Me, and celastrol exhibit antiproliferative, antiangiogenic and proapoptotic activity in many cancer cells and tumors. Treatment of cancer cells derived from urologic and gastrointestinal tumors with arsenic trioxide decreased Sp1, Sp3 and Sp4 transcription factors and cotreatment with the proteosome inhibitor MG132 did not inhibit downregulation of Sp proteins in these cancer cells. Mechanistic studies suggested that compound-dependent downregulation of Sp and Sp-dependent genes was due to decreased mitochondrial membrane potential and induction of reactive oxygen species, and the role of peroxides in mediating these responses was confirmed using hydrogen peroxide, demonstrating that the mitochondriotoxic effects of these compounds are important for their anticancer activities.
Moreover, repression of Sp and Sp-dependent genes by CDDO-Me and celastrol was due to downregulation of microRNA-27a and induction of ZBTB10, an Sp repressor, and these responses were also reversed by antioxidants. Thus, the anticancer activity of CDDO-Me and celastrol is due, in part, to activation of ROS which in turn targets the microRNA-27a:ZBTB10?Sp transcription factor axis to decrease growth inhibitory, pro-apoptotic and antiangiogenic genes and responses.
|
3 |
Evolution of Sp Transcription Factors in Metazoans / Evolution von Sp Transkriptionsfaktoren in MetazoenSchäper, Nina 15 January 2010 (has links)
No description available.
|
Page generated in 0.1032 seconds