• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maraviroc, Celastrol and Azelastine Alter Chlamydia Trachomatis Development in HeLa Cells

Kuratli, Jasmin, Leonard, Cory Ann, Nufer, Lisbeth, Marti, Hanna, Schoborg, Robert, Borel, Nicole 12 November 2020 (has links)
Introduction. Chlamydia trachomatis (Ct) is an obligate intracellular bacterium, causing a range of diseases in humans. Interactions between chlamydiae and antibiotics have been extensively studied in the past. Hypothesis/Gap statement: Chlamydial interactions with non-antibiotic drugs have received less attention and warrant further investigations. We hypothesized that selected cytokine inhibitors would alter Ct growth characteristics in HeLa cells. Aim. To investigate potential interactions between selected cytokine inhibitors and Ct development in vitro. Methodology. The CCR5 receptor antagonist maraviroc (Mara; clinically used as HIV treatment), the triterpenoid celastrol (Cel; used in traditional Chinese medicine) and the histamine H1 receptor antagonist azelastine (Az; clinically used to treat allergic rhinitis and conjunctivitis) were used in a genital in vitro model of Ct serovar E infecting human adenocarcinoma cells (HeLa). Results. Initial analyses revealed no cytotoxicity of Mara up to 20 µM, Cel up to 1 µM and Az up to 20 µM. Mara exposure (1, 5, 10 and 20 µM) elicited a reduction of chlamydial inclusion numbers, while 10 µM reduced chlamydial infectivity. Cel 1 µM, as well as 10 and 20 µM Az, reduced chlamydial inclusion size, number and infectivity. Morphological immunofluorescence and ultrastructural analysis indicated that exposure to 20 µM Az disrupted chlamydial inclusion structure. Immunofluorescence evaluation of Cel-incubated inclusions showed reduced inclusion sizes whilst Mara incubation had no effect on inclusion morphology. Recovery assays demonstrated incomplete recovery of chlamydial infectivity and formation of structures resembling typical chlamydial inclusions upon Az removal. Conclusion. These observations indicate that distinct mechanisms might be involved in potential interactions of the drugs evaluated herein and highlight the need for continued investigation of the interaction of commonly used drugs with Chlamydia and its host.
2

The Isolation and Biological Evaluation of Anti-inflammatory and Chemopreventive Triterpenoid Natural Products

Barker, Emily Clegg 03 June 2015 (has links)
No description available.
3

Hsp90 humana : interação com a co-chaperona Tom70 e efeito do celastrol na estrutura e função / Human Hsp90 : interaction with the co-chaperone Tom70 and effect of celastrol on the structure and function

Murakami, Letícia Maria Zanphorlin, 1984- 10 February 2014 (has links)
Orientador: Carlos Henrique Inácio Ramos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T13:20:36Z (GMT). No. of bitstreams: 1 Murakami_LeticiaMariaZanphorlin_D.pdf: 5383539 bytes, checksum: 1a45d203e6e3c5a992791b8ce893aa36 (MD5) Previous issue date: 2014 / Resumo: Chaperonas moleculares e proteínas de choque térmico (Heat shock protein, Hsp) atuam contra a agregação e o enovelamento incorreto de proteínas, que são os agentes causais de doenças neurodegenerativas, como por exemplo, Alzheimer e Parkinson. A Hsp90 é uma das mais importantes chaperonas moleculares, considerada essencial para a viabilidade celular em eucariotos, pois está associada com a maturação de proteínas atuantes na sinalização e ciclo celular. Além disso, foi demonstrado que a Hsp90 está envolvida na estabilização do fenótipo tumoral de diversos tipos de câncer, destacando a sua importância biomédica. A interação com co-chaperonas, proteínas auxiliares das chaperonas, permite que a Hsp90 atue como uma proteína "hub", ou seja, um ponto central de regulação de diversas proteínas. Muitas dessas co-chaperonas possuem um ou mais domínios do tipo TPR (do inglês, tetratricopeptide repeat) que interagem com o C-terminal da Hsp90. No presente projeto de doutorado, investigamos as características estruturais e termodinâmicas da interação entre o domínio C-terminal da Hsp90 (C-Hsp90) e a co-chaperona TPR Tom70 humana, utilizando técnicas de reação-cruzada acoplada à espectrometria de massas (LC-MS/MS), calorimetria de titulação isotérmica (ITC), espalhamento de raios-X à baixos ângulos (SAXS) e modelagem molecular. Os resultados de LC-MS/MS e ITC evidenciaram novas regiões na interação do complexo C-Hsp90/Tom70 que envolve a hélice A7 presente na Tom70 e experimentos de SAXS revelaram a estrutura em baixa resolução das proteínas C-Hsp90, Tom70 e do complexo C-Hsp90/Tom70. Além disso, investigamos o efeito do celastrol, um composto com potencial atividade anti-câncer, na conformação e na função da Hsp90. Na presença do composto, a Hsp90 sofre um processo de oligomerização e a natureza dos oligômeros foi determinada por ferramentas bioquímicas e biofísicas, tais como espalhamento dinâmico de luz (DLS), cromatografia de exclusão molecular analítica acoplada a espalhamento de luz em multiângulos (SEC-MALS) e eletroforese em gel nativo. Interessantemente, a oligomerização induzida pelo celastrol não afetou a atividade de proteção da Hsp90 contra a agregação protéica e a capacidade de ligação as co-chaperonas com enovelamento tipo TPR. Este é o primeiro trabalho a apontar um possível mecanismo para a ação do celastrol sobre a Hsp90. Coletivamente, nossos resultados e descobertas contribuem para uma melhor compreensão dos mecanismos moleculares relacionados à interação entre chaperonas e co-chaperonas, bem como, chaperonas e potenciais ligantes. / Abstract: Molecular chaperones and heat shock proteins (Hsp) act against protein aggregation and misfolding, which are the causal agents of neurodegenerative diseases such as Alzheimer and Parkinson. Hsp90 is one of the most important molecular chaperones, considered essential for cell viability in eukaryotes, since it is associated with the maturation of proteins involved in cell cycle and signaling. In addition, it was demonstrated that Hsp90 is implicated in the stabilization of the tumor phenotype of various types of cancer, highlighting its biomedical importance. The interaction with co-chaperones, auxiliary proteins of chaperones, allows that Hsp90 acts as a hub, being a central point for regulation of several other proteins. Many of these co-chaperones have one or more TPR domains that interact with the C-terminus of Hsp90. In this PhD project, we investigated structural and thermodynamic characteristics of the interaction between the C-terminus domain of Hsp90 (C-Hsp90) and the TPR co-chaperone human Tom70, using techniques of cross-linking coupled with mass spectrometry (LC-MS/MS), isothermal titration calorimetry (ITC), small angle X-ray scattering (SAXS) and molecular modeling. The results of LC-MS/MS and ITC revealed new regions involved in the interaction of the C-Hsp90 with Tom70, which encompasses the A7 helix from Tom70, and SAXS experiments unveiled the low resolution structure of the proteins C-Hsp90, Tom70 and the C-Hsp90/Tom70 complex. In addition, we investigated the effect of celastrol, a compound with a potential anti-cancer activity, on the conformation and function of Hsp90. In the presence of celastrol, Hsp90 undergoes oligomerization and the nature of the oligomers was determined by biochemical and biophysical tools such as dynamic light scattering (DLS), size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) and native gel electrophoresis. Interestingly, the celastrol-induced oligomerization did not affect the protective activities of Hsp90 against protein aggregation or the capacity to bind TPR co-chaperones. This is the first study to point out a possible mechanism for the action of celastrol on Hsp90. Collectively, our findings contribute to a better understanding of the molecular mechanisms associated to the interaction between chaperones and co-chaperones, as well as chaperones and potential ligands / Doutorado / Quimica Organica / Doutora em Ciências
4

INDUCTION OF THE HEAT SHOCK RESPONSE TO PROTECT AGAINST POLYGLUTAMINE DISEASES AND THE ROLE OF PROTEIN SUMOYLATION IN LAMINOPATHIES AND ALZHEIMER'S DISEASE

Zhang, Yu-Qian 01 January 2008 (has links)
Heat shock proteins function as molecular chaperones which help protein folding and prevent protein aggregation. My study shows that celastrol, a pharmacological compound capable of up-regulating the levels of heat shock proteins, inhibits cell death and protein aggregation caused by expanded polyglutamine containing protein, and the protective effects of celastrol are dependent on heat shock factor 1. These results suggest the potential of celastrol as a therapeutic agent in the treatment of polyglutamine diseases. Sumoylation is a protein modification which plays diverse roles in regulating the target proteins. My study shows that lamin A is a target of protein sumoylation, and two lamin A mutants associated with familial dilated cardiomyopathy, E203G and E203K, exhibit decreased sumoylation. My results also indicate that sumoylation is important for the normal localization of lamin A, and support a role for altered sumoylation in the underlying molecular mechanism of cardiomyopathies associated with the E203G/E203K lamin A mutations. In the third project, my results show that amyloid precursor protein is another target of SUMO modification, and sumoylation of amyloid precursor protein reduces the levels of amyloid β aggregates, which are the primary causative factor for Alzheimer’s disease. My results provide a new mechanism for the generation of amyloid β, and indicate the potential of up-regulating activity of the cellular sumoylation machinery as an approach against Alzheimer’s disease. My results also provide the first demonstration that SUMO E2 enzyme exists in the lumen of the endoplasmic reticulum, extending the sub-cellular reach of sumoylation to include the regulation of proteins in secretory pathways.
5

New Mechanism Based Anticancer Drugs for Treatment of Pancreatic and Bladder Cancers

Jutooru, Indira Devi 2010 May 1900 (has links)
Methyl 2-cyano-3,11-dioxo-18b-olean-1,12-dien-30-oate (CDODA-Me) is a synthetic triterpenoid that inhibits growth of Panc1 and Panc28 pancreatic cancer cell lines and activates peroxisome proliferator-activated receptor B (PPARB)-dependent transactivation in these cells. CDODA-Me has also induced p21 and p27 protein expression and downregulated cyclin D1; however, these responses were receptor-independent. CDODA-Me induced apoptosis, which was accompanied by receptor-independent induction of the proapoptotic proteins early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), and activating transcription factor-3 (ATF3). Induction of NAG-1 in Panc28 cells was p38-mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3-K)-dependent, but Egr-1-independent, whereas induction in Panc1 cells was associated with activation of p38-MAPK, PI3-K and p42-MAPK and was only partially Egr-1-dependent. Specificity protein (Sp) transcription factors Sp1, Sp3 & Sp4 are overexpressed in multiple tumor types and negative prognostic factors for survival. Since Sp proteins regulate genes associated with survival (survivin), angiogenesis [vascular endothelial growth factor and its receptors] and growth [cyclin D1, epidermal growth factor receptor], research in this laboratory has focused on development of anticancer drugs that decrease Sp protein expression. Arsenic trioxide, curcumin, 2-cyano-3,12-dioxoleana-1,9-dien-28-oic acid (CDDO), CDDO-Me, and celastrol exhibit antiproliferative, antiangiogenic and proapoptotic activity in many cancer cells and tumors. Treatment of cancer cells derived from urologic and gastrointestinal tumors with arsenic trioxide decreased Sp1, Sp3 and Sp4 transcription factors and cotreatment with the proteosome inhibitor MG132 did not inhibit downregulation of Sp proteins in these cancer cells. Mechanistic studies suggested that compound-dependent downregulation of Sp and Sp-dependent genes was due to decreased mitochondrial membrane potential and induction of reactive oxygen species, and the role of peroxides in mediating these responses was confirmed using hydrogen peroxide, demonstrating that the mitochondriotoxic effects of these compounds are important for their anticancer activities. Moreover, repression of Sp and Sp-dependent genes by CDDO-Me and celastrol was due to downregulation of microRNA-27a and induction of ZBTB10, an Sp repressor, and these responses were also reversed by antioxidants. Thus, the anticancer activity of CDDO-Me and celastrol is due, in part, to activation of ROS which in turn targets the microRNA-27a:ZBTB10?Sp transcription factor axis to decrease growth inhibitory, pro-apoptotic and antiangiogenic genes and responses.
6

THE EFFECTS OF P22PHOX GENETIC POLYMORPHISMS AND NATURAL COMPOUNDS ON REACTIVE OXYGEN SPECIES FORMATION

Whitehouse, Scott David 21 February 2013 (has links)
Reactive oxygen species (ROS) have a role in cardiovascular health and disease. This study was undertaken to determine if ROS formation is influenced by either common genetic variations in p22phox, a subunit of the ROS generating enzyme NOX1, or by natural plant compounds with cardiovascular benefits. Hydrogen peroxide production was measured using Amplex Red, and superoxide generation was measured using NBT and MCLA. Each of seven p22phox variants supported ROS generation by NOX1. No differences were found in the rate of ROS production; however, unequal transfer of the p22phox gene may be a confounding factor. A variation in the 3’UTR of the p22phox gene led to lower p22phox protein levels, whereas none of the other variations affected mRNA or protein expression. The natural compound resveratrol acts as an antioxidant towards hydrogen peroxide, but not superoxide. Resveratrol does not inhibit NOX1 activity.
7

Studies toward the synthesis of celastrol and the late-stage hydroxylation of arenes mediated by 4,5-dichlorophthaloyl peroxide

Camelio, Andrew Michael 03 July 2014 (has links)
The natural product celastrol (1) possesses a wide array of promising biological activities related to diseases characterized by protein misfolding including those associated with neuronal degradation, inflammation, and cancer. Relevant to cancer, celastrol functions as a non-ATP-competitive inhibitor of heat shock protein-90, providing a potential lead for the development of new inhibitors with improved pharmacology. A laboratory preparation of the small molecule was undertaken to provide access to the unnatural enantiomer of celastrol. The lack of understanding of the chemistry and biology of the growing class of celastroids is attributed to the incompatibility of biologically inspired polyene cyclization strategies to assemble friedelin triterpenoids. As a result of these problems residing at the interface of chemistry and biology, a purely synthesis-based strategy for polyene cyclizations to rapidly construct the pentacyclic core of the friedelin and celastroid natural products has been developed. This efficient strategy is gram scalable culminating in the first total synthesis of wilforic acid (127) and an advanced intermediate capable of delivering celastrol (1) as well as numerous celastroid natural products. Phenols possess broad utility serving as key materials in all facets of chemical industries, especially the pharmaceutical industry. The ideal synthesis of a phenolic compound entails the direct oxidation of an aryl C-H bond remains to be a difficult synthetic challenge. Following our initial report describing the hydroxylation of arenes using phthaloyl peroxide, new peroxide derivatives were investigated to probe their reactivity in an effort to hydroxylate aromatics which were previously unreactive. Electronically poor to moderately rich arenes were successfully hydroxylated with a broad functional group tolerance using 4,5-dichlorophthaloyl peroxide. This protocol has been applied toward the rapid synthesis of phenolic analogs and metabolites of current pharmaceuticals as well as biocides. Mechanistic studies using kinetic isotope effect, competition, and benzylic oxidation experiments indicate that a novel diradical reverse-rebound mechanism is the likely pathway. Further examination of the transition-state using linear free energy relationships with sigma vs. sigma+ values established a linear trend with a low negative rho value (- 3.92) corresponding best using sigma values supporting a diradical reverse-rebound addition. / text
8

The effects of celastrol on endothelial cells survival and proliferation

Vu, Minh Quan 08 1900 (has links)
Introduction: Coronary artery bypass grafts are most commonly performed using saphenous vein grafts to complement the internal thoracic artery. The saphenous vein will remain popular despite its lower patency rate because it is easily accessible and lengthy enough to perform multiple bypasses. Therefore, several approaches have been studied, with the common goal of finding the optimal conditions that reduce graft failure. They include novel harvest techniques, new preservation preparations, innovative genetic therapies and experimental drugs. We believe a pharmacological pre-conditioning with an anti-oxidative and anti-inflammatory drug during the crucial time of harvest may spark beneficial survival response from the endothelial cells. One particular compound is Celastrol, an HSP90 inhibitor, which displays those antioxidant and anti-inflammatory properties. Methods: Human umbilical vein endothelial cells (HUVEC) were pretreated with various concentrations of Celastrol (10-10M, 10-8M and 10-6M). In order to reproduce oxidative stress found in ischemia/reperfusion, cells were exposed to hydrogen peroxide for a short and extended period (1h and 24h). To mimic storage condition encountered in clinical settings, cells were also exposed in heparinized normal saline. The viability was assessed by LIVE/DEAD assay. As for migrative and proliferative properties, scratch tests were performed. Finally, various protective intracellular pathways were evaluated by Western blot. Results: This study shows that pre-treatment with Celastrol promotes survival in HUVEC submitted to oxidative stress. Notable improvement in cellular viability was detected as early as 1 hour after oxidative stress (H2O2 4 mM), 76.6% vs 66.1% (p=0.005). Significant survival benefits are also reported after prolonged oxidative stress (H2O2 0.5 mM for 24 hours); viability was 93.7% vs 76.9% (p=0.001) for Cel 10- 8 M and 96.6% vs 76.9% (p=0.002) for Celastrol 10-10M when compared to the vehicle. Celastrol, however, did not significantly affect viability of HUVEC stored in heparinized normal saline. Celastrol at 10-6 M promotes faster and more complete wound closure compared to the vehicle or to lower dosages. Celastrol triggers early activation of the RISK pathway, inducing activation of both Akt and ERK1/2 within the first 15 minutes of treatment. Celastrol also induces the expression of HSP70 and HO-1, effectors of the Heat Shock Response and the anti-oxidative response respectively. Conclusion: Pre-treatment by Celastrol provides survival benefits in endothelial cells under oxidative stress. It also stimulates endothelial cell proliferation and migration, promoting faster and more complete re-endothelialisation. Celastrol can potentially be used as an additive to storage solutions to limit endothelial injury and promote graft protection. / Introduction: La chirurgie de pontage coronarien requiert, dans la grande majorité des cas, l’utilisation de l’artère mammaire interne en combinaison avec un ou des greffons provenant de la grande veine saphène. Malgré le taux de perméabilité inférieur aux artères, la veine saphène reste un choix populaire de conduit en raison de son accessibilité et de sa longueur. De ce fait, le greffon veineux devient la cible de multiples approches et le sujet de nombreuses études visant à optimiser sa perméabilité. Celles-ci incluent le raffinement des techniques de prélèvement, les solutions de préservations, les agents pharmacologiques ainsi que la thérapie génique. Il est davantage intéressant de combiner les approches afin de joindre leurs bénéfices, comme, par exemple, ajouter un agent pharmacologique à une solution de préservation. Un agent potentiel serait le Celastrol, connu pour être un inhibiteur du HSP90 et possède des propriétés antioxydantes et anti-inflammatoires. Méthodologie: Des cellules endothéliales humaines provenant de la veine ombilicale (HUVEC) sont pré-conditionnées à de multiples concentrations de Celastrol (10-10M, 10-8M and 10-6M) pendant une heure avant d’être soumises aux conditions de stress. Pour reproduire les conditions per-opératoires de prélèvement, les cellules endothéliales ont été préservées dans du salin (NS) héparinisé. Pour mimer le stress secondaire à l’ischémie/reperfusion, les cellules ont aussi été soumises à diverses concentrations de H2O2. Une analyse de la viabilité cellulaire fut conduite par le test de LIVE/DEAD. La capacité de ré-endothélialisation est étudiée grâce à l’épreuve de scratch test. Les voies intracellulaires de survie telles que le RISK pathway (Akt, ERK1/2), le Heat shock response (HSP70) et la réponse anti-oxydante (via l’activité de HO-1) ont été examinées par immunoblot. Résultats: Les résultats démontrent que la préservation des cellules endothéliales dans du NS héparinisé est associée à une augmentation de la mortalité comparativement au milieu de culture (20.4% vs 1.9%, p=0.004). Toutefois, un traitement au Celastrol n’affecte pas significativement la survie des cellules endothéliales dans le NS héparinisé. Le stress oxydatif induit aussi une augmentation de la mortalité, et ce à dose-dépendante. Suivant un court stress 6 oxydatif (H2O2 4 mM), un pré-traitement au Celastrol 10-10M est associé à une meilleure viabilité comparativement au véhicule (76.6% vs 66.1%, p=0.005). Lorsque soumises à un stress oxydatif prolongé (H2O2 0.5 mM pendant 24h), les HUVEC pré-traitées au Celastrol à 10-8M et 10-10M démontrent une amélioration significative de la viabilité, 93.7% vs 76.9% (p=0.001) et 93.6% vs 76.9% (p=0.002) respectivement. Quant à la ré-endothélialisation, un traitement au Celastrol 10- 6M est associé à une fermeture plus rapide et complète comparativement au véhicule. Un court traitement au Celastrol active précocement les kinases de la voie de RISK (Akt et ERK). Le traitement induit aussi l’expression de HSP70 et HO-1 qui reste soutenue jusqu’à 48 heures posttraitement. Conclusion: Le Celastrol active plusieurs voies de protection intracellulaire tels que le RISK pathway, le Heat Shock Response et la réponse antioxydante via l’activité de HO-1. En corrélation avec cette réponse, il améliore la survie des cellules endothéliales dans un milieu oxydatif. Le Celastrol promeut aussi une ré-endothélialisation plus complète et rapide. Cette étude met en valeur les bénéfices potentiels du Celastrol sur les cellules endothéliales. Afin d’optimiser la protection du greffon, le Celastrol pourrait donc être considéré comme agent adjuvant à une solution de préservation.

Page generated in 0.0552 seconds