• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visualizing Dynamics –The Perception of Spatiotemporal Data in 2D and 3D

Kjellin, Andreas January 2008 (has links)
<p>In many command and control situations the understanding of dynamic events is crucial. With today’s development of hard- and software architecture, we have the possibility to visualize data in two-dimensional (2D) and three-dimensional (3D) images. The aim of this thesis is therefore to investigate different approaches to visualizing dynamic events. The visualization techniques investigated include 2D animation and time representations as markings on a 2D map. In 3D the visualization technique investigated is the “space time-cube” A further aim is to study whether the Cue Probability Learning (CPL) paradigm can be used to evaluate visualizations.</p><p>By mapping time onto a spatial dimension, in the 2D visualization as lines with different densities and in 3D as height over the map, a simultaneous visualization of space and time is possible. The findings are that this mapping of time onto space is beneficial to users as compared with animations, but the two mapping techniques are not interchangeable. If a task requires judgments of metric spatial properties, a 2D visualization is more beneficial; however, if the task only requires judgments of more qualitative aspects, a 3D visualization is more beneficial.</p><p>When we look at a 3D visualization, we utilize different sources of depth information. These sources are always present and each defines either a 3D scene or a projection surface. By using these different sources of depth information wisely, a visualization can be created that efficiently shows relevant information to a user while requiring a minimal amount of specialized hardware.</p><p>Finally, the CPL paradigm seems to be a worthwhile option as an experimental paradigm in visualization experiments. One of the advantages of CPL is that novice users can be trained to be task experts in a controlled and time-efficient way.</p>
2

Visualizing Dynamics –The Perception of Spatiotemporal Data in 2D and 3D

Kjellin, Andreas January 2008 (has links)
In many command and control situations the understanding of dynamic events is crucial. With today’s development of hard- and software architecture, we have the possibility to visualize data in two-dimensional (2D) and three-dimensional (3D) images. The aim of this thesis is therefore to investigate different approaches to visualizing dynamic events. The visualization techniques investigated include 2D animation and time representations as markings on a 2D map. In 3D the visualization technique investigated is the “space time-cube” A further aim is to study whether the Cue Probability Learning (CPL) paradigm can be used to evaluate visualizations. By mapping time onto a spatial dimension, in the 2D visualization as lines with different densities and in 3D as height over the map, a simultaneous visualization of space and time is possible. The findings are that this mapping of time onto space is beneficial to users as compared with animations, but the two mapping techniques are not interchangeable. If a task requires judgments of metric spatial properties, a 2D visualization is more beneficial; however, if the task only requires judgments of more qualitative aspects, a 3D visualization is more beneficial. When we look at a 3D visualization, we utilize different sources of depth information. These sources are always present and each defines either a 3D scene or a projection surface. By using these different sources of depth information wisely, a visualization can be created that efficiently shows relevant information to a user while requiring a minimal amount of specialized hardware. Finally, the CPL paradigm seems to be a worthwhile option as an experimental paradigm in visualization experiments. One of the advantages of CPL is that novice users can be trained to be task experts in a controlled and time-efficient way.

Page generated in 0.0684 seconds