• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle correlators for a sounding rocket experiment

Senol, Yavuz January 1993 (has links)
No description available.
2

Turbulence in heliospheric plasmas: characterizing the energy cascade and mechanisms of dissipation

Verniero, J. L. 01 May 2019 (has links)
In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. In the inertial range, the self-similar turbulent energy cascade to smaller spatial scales is driven by the nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions. For the more realistic case of the collision between two initially separated Alfvén wavepackets (rather than previous idealized, periodic cases), we use a nonlinear gyrokinetic simulation code, AstroGK, to demonstrate three key properties of strong Alfvén wave collisions: they (i) facilitate the perpendicular cascade of energy and (ii) generate current sheets self-consistently, and (iii) the modes mediating the nonlinear interaction are simply Alfvén waves. Once the turbulent cascade reaches the ion gyroradius scale, the Alfvén waves become dispersive and the turbulent energy starts to dissipate, energizing the particles via wave-particle interactions with eventual dissipation into plasma heat. The novel Field-Particle Correlation technique determines how turbulent energy dissipates into plasma heat by identifying which particles in velocity-space experience a net gain of energy. By utilizing knowledge of discrete particle arrival times, we devise a new algorithm called PATCH (Particle Arrival Time Correlation for Heliophysics) for implementing a field-particle correlator onboard spacecraft. Using AstroGK, we create synthetic spacecraft data mapped to realistic phase-space resolutions of modern spacecraft instruments. We then utilize Poisson statistics to determine the threshold number of particle counts needed to resolve the velocity-space signature of ion Landau damping using the PATCH algorithm.
3

Surface Morphology Implications on Langmuir Probe Measurements

Suresh, Padmashri 01 May 2011 (has links)
Langmuir probes are extensively employed to study the plasmas in space and laboratory environments. Successful measurements require a comprehensive modeling of both the plasma environment and the probe conditions in the form of current collection models. In this thesis, the surface morphology implications on the probe current collection are investigated. This problem is applied and solved in the context of a CubeSat regime. The first problem that is investigated is the consequence of surface structural variability on the current measurements. A new model for dealing with non-uniformity of the probe surface structure is developed in this paper. This model is applied to analyze the Langmuir probe data from a sounding rocket mission that was subjected to surface structural non-homogeneities. This model would be particularly useful for CubeSat platforms where elaborate probe design procedures are not feasible. The second problem that is investigated is the surface area implications on Langmuir probe measurements. It has been established that surface area ratio of the spacecraft to that of the probe needs to be sufficiently large to make successful plasma measurements. CubeSats would therefore pose a challenge for employing Langmuir-type instruments to study the space plasma. We inspect the feasibility of making plasma measurements using Langmuir probes subjected to CubeSat area constraints. This analysis is done for a forthcoming Utah State University (USU)/Space Dynamics Lab (SDL) CubeSat mission.

Page generated in 0.1055 seconds