• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antispamové filtry / Antispam filters

František, Jiří January 2011 (has links)
The thesis is involves the desing antispam solution for operating system GNU/Linux. At the first is going through theory of transport, receive mail message and problematic of spam. The content of thesis is realize mail server with mail transfer agent Postfix. Amavis was used as antispam solution, which make an interface between Postfix and content checkers. This was created by SpamAssassin and ClavAV. Main goal was created aplication for setting of antispam filters. The result is possibility of setting a creating filters with black and white lists. Messages in quarantine ca
2

Spamerkennung mit Support Vector Machines

Möller, Manuel 22 June 2005 (has links) (PDF)
Diese Arbeit zeigt ausgehend von einer Darstellung der theoretischen Grundlagen automatischer Textklassifikation, dass die aus der Statistical Learning Theory stammenden Support Vector Machines geeignet sind, zu einer präziseren Erkennung unerwünschter E-Mail-Werbung beizutragen. In einer Testumgebung mit einem Corpus von 20 000 E-Mails wurden Testläufe verschiedene Parameter der Vorverarbeitung und der Support Vector Machine automatisch evaluiert und grafisch visualisiert. Aufbauend darauf wird eine Erweiterung für die Open-Source-Software SpamAssassin beschrieben, die die vorhandenen Klassifikationsmechanismen um eine Klassifikation per Support Vector Machine erweitert.
3

Naive Bayesian Spam Filters for Log File Analysis

Havens, Russel William 13 July 2011 (has links) (PDF)
As computer system usage grows in our world, system administrators need better visibility into the workings of computer systems, especially when those systems have problems or go down. Most system components, from hardware, through OS, to application server and application, write log files of some sort, be it system-standardized logs such syslog or application specific logs. These logs very often contain valuable clues to the nature of system problems and outages, but their verbosity can make them difficult to utilize. Statistical data mining methods could help in filtering and classifying log entries, but these tools are often out of the reach of administrators. This research tests the effectiveness of three off-the-shelf Bayesian spam email filters (SpamAssassin, SpamBayes and Bogofilter) for effectiveness as log entry classifiers. A simple scoring system, the Filter Effectiveness Scale (FES), is proposed and used to compare these filters. These filters are tested in three stages: 1) the filters were tested with the SpamAssassin corpus, with various manipulations made to the messages, 2) the filters were tested for their ability to differentiate two types of log entries taken from actual production systems, and 3) the filters were trained on log entries from actual system outages and then tested on effectiveness for finding similar outages via the log files. For stage 1, messages were tested with normalized bodies, normalized headers and with each sentence from each message body as a separate message with a standardized message. The impact of each manipulation is presented. For stages 2 and 3, log entries were tested with digits normalized to zeros, with words chained together to various lengths and one or all levels of word chains used together. The impacts of these manipulations are presented. In each of these stages, it was found that these widely available Bayesian content filters were effective in differentiating log entries. Tables of correct match percentages or score graphs, according to the nature of tests and numbers of entries are presented, are presented, and FES scores are assigned to the filters according to the attributes impacting their effectiveness. This research leads to the suggestion that simple, off-the-shelf Bayesian content filters can be used to assist system administrators and log mining systems in sifting log entries to find entries related to known conditions (for which there are example log entries), and to exclude outages which are not related to specific known entry sets.
4

Spamerkennung mit Support Vector Machines

Möller, Manuel 22 June 2005 (has links)
Diese Arbeit zeigt ausgehend von einer Darstellung der theoretischen Grundlagen automatischer Textklassifikation, dass die aus der Statistical Learning Theory stammenden Support Vector Machines geeignet sind, zu einer präziseren Erkennung unerwünschter E-Mail-Werbung beizutragen. In einer Testumgebung mit einem Corpus von 20 000 E-Mails wurden Testläufe verschiedene Parameter der Vorverarbeitung und der Support Vector Machine automatisch evaluiert und grafisch visualisiert. Aufbauend darauf wird eine Erweiterung für die Open-Source-Software SpamAssassin beschrieben, die die vorhandenen Klassifikationsmechanismen um eine Klassifikation per Support Vector Machine erweitert.

Page generated in 0.0293 seconds