Spelling suggestions: "subject:"panning trees"" "subject:"panning àrees""
11 |
On the shortest path and minimum spanning tree problemsPettie, Seth, January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
|
12 |
Spanning tree modulus: deflation and a hierarchical graph structureClemens, Jason January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Nathan Albin / The concept of discrete $p$-modulus provides a general framework for understanding arbitrary families of objects on a graph. The $p$-modulus provides a sense of ``structure'' of the underlying graph, with different families of objects leading to different insight into the graph's structure. This dissertation builds on this idea, with an emphasis on the family of spanning trees and the underlying graph structure that spanning tree modulus exposes.
This dissertation provides a review of the probabilistic interpretation of modulus. In the context of spanning trees, this interpretation rephrases modulus as the problem of choosing a probability mass function on the spanning trees so that two independent, identically distributed random spanning trees have expected overlap as small as possible.
A theoretical lower bound on the expected overlap is shown. Graphs that attain this lower bound are called homogeneous and have the property that there exists a probability mass function that gives every edge equal likelihood to appear in a random tree. Moreover, any nonhomogeneous graph necessarily has a homogeneous subgraph (called a homogeneous core), which is shown to split the modulus problem into two smaller subproblems through a process called deflation.
Spanning tree modulus and the process of deflation establish a type of hierarchical structure in the underlying graph that is similar to the concept of core-periphery structure found in the literature. Using this, one can see an alternative way of decomposing a graph into its hierarchical community components using homogeneous cores and a related concept: minimum feasible partitions.
This dissertation also introduces a simple greedy algorithm for computing the spanning tree modulus that utilizes any efficient algorithm for finding minimum spanning trees. A theoretical proof of the convergence rate is provided, along with computational examples.
|
13 |
Souvislost a resilience grafů / Souvislost a resilience grafůNovotná, Jitka January 2015 (has links)
A graph is k-resilient if it is possible to construct local routing tables for each vertex such that we can reach a specified destination vertex from anywhere in the graph. There is a conjecture that k-resilience is equivalent to (k+1)-connectivity. We prove this for 3-edge-connected graphs and 4-edge-connected planar triangulations. In the proof we use independent directed spanning trees. Two spanning trees are independent if they share no common edge with the same direction. For k=3,4 we show that a graph has k independent spanning trees if and only if it is k-edge-connected. We search for the spanning trees constructively through reductions of parts of the graph. Some of these reductions can also be used in a general k- connected case. Powered by TCPDF (www.tcpdf.org)
|
14 |
Enumeration problems on latticesOcansey, Evans Doe 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The main objective of our study is enumerating spanning trees (G) and perfect matchings
PM(G) on graphs G and lattices L. We demonstrate two methods of enumerating
spanning trees of any connected graph, namely the matrix-tree theorem and as a special
value of the Tutte polynomial T(G; x; y).
We present a general method for counting spanning trees on lattices in d 2 dimensions.
In particular we apply this method on the following regular lattices with d = 2:
rectangular, triangular, honeycomb, kagomé, diced, 9 3 lattice and its dual lattice to
derive a explicit formulas for the number of spanning trees of these lattices of finite sizes.
Regarding the problem of enumerating of perfect matchings, we prove Cayley’s theorem
which relates the Pfaffian of a skew symmetric matrix to its determinant. Using
this and defining the Pfaffian orientation on a planar graph, we derive explicit formula for
the number of perfect matchings on the following planar lattices; rectangular, honeycomb
and triangular.
For each of these lattices, we also determine the bulk limit or thermodynamic limit,
which is a natural measure of the rate of growth of the number of spanning trees (L)
and the number of perfect matchings PM(L).
An algorithm is implemented in the computer algebra system SAGE to count the
number of spanning trees as well as the number of perfect matchings of the lattices
studied. / AFRIKAANSE OPSOMMING: Die hoofdoel van ons studie is die aftelling van spanbome (G) en volkome afparings
PM(G) in grafieke G en roosters L. Ons beskou twee metodes om spanbome in ’n samehangende
grafiek af te tel, naamlik deur middel van die matriks-boom-stelling, en as ’n
spesiale waarde van die Tutte polinoom T(G; x; y).
Ons behandel ’n algemene metode om spanbome in roosters in d 2 dimensies af te
tel. In die besonder pas ons hierdie metode toe op die volgende reguliere roosters met
d = 2: reghoekig, driehoekig, heuningkoek, kagomé, blokkies, 9 3 rooster en sy duale
rooster. Ons bepaal eksplisiete formules vir die aantal spanbome in hierdie roosters van
eindige grootte.
Wat die aftelling van volkome afparings aanbetref, gee ons ’n bewys van Cayley se
stelling wat die Pfaffiaan van ’n skeefsimmetriese matriks met sy determinant verbind.
Met behulp van hierdie stelling en Pfaffiaanse oriënterings van planare grafieke bepaal
ons eksplisiete formules vir die aantal volkome afparings in die volgende planare roosters:
reghoekig, driehoekig, heuningkoek.
Vir elk van hierdie roosters word ook die “grootmaat limiet” (of termodinamiese limiet)
bepaal, wat ’n natuurlike maat vir die groeitempo van die aantaal spanbome (L) en die
aantal volkome afparings PM(L) voorstel.
’n Algoritme is in die rekenaaralgebra-stelsel SAGE geimplementeer om die aantal
spanboome asook die aantal volkome afparings in die toepaslike roosters af te tel.
|
15 |
Network Flow Models for Designing Diameter-Constrained Minimum Spanning and Steiner TreesGouveia, Luis, Magnanti, Thomas L. 08 1900 (has links)
The Diameter-Constrained Minimum Spanning Tree Problem seeks a least cost spanning tree subject to a (diameter) bound imposed on the number of edges in the tree between any node pair. A traditional multicommodity flow model with a commodity for every pair of nodes was unable to solve a 20-node and 100-edge problem after one week of computation. We formulate the problem as a directed tree from a selected central node or a selected central edge. Our model simultaneously finds a central node or a central edge and uses it as the source for the commodities in a directed multicommodity flow model with hop constraints. The new model has been able to solve the 20-node, 100-edge instance to optimality after less than four seconds. We also present model enhancements when the diameter bound is odd (these situations are more difficult). We show that the linear programming relaxation of the best formulations discussed in this paper always give an optimal integer solution for two special, polynomially-solvable cases of the problem. We also examine the Diameter Constrained Minimum Steiner Tree problem. We present computational experience in solving problem instances with up to 100 nodes and 1000 edges. The largest model contains more than 250,000 integer variables and more than 125,000 constraints.
|
16 |
Approximation algorithms for minimum-cost low-degree subgraphsKönemann, Jochen. January 1900 (has links) (PDF)
Thesis (Ph. D.)--Carnegie Mellon University, 2003. / Title from PDF title page (viewed Dec. 18, 2009). Includes bibliographical references (p. 49-52).
|
17 |
Greedy routing in a graph by aid of its spanning tree experimental results and analysis /Sehgal, Rahul. January 2009 (has links)
Thesis (M.S.)--Kent State University, 2009. / Title from PDF t.p. (viewed Jan. 25, 2010). Advisor: Feodor Dragan. Keywords: greedy routing. Includes bibliographical references (p. 76-77).
|
18 |
Chemin optimal, conception et amélioration de réseaux sous contrainte de distance / Optimal path, design and improvement of networks with distance constraintNakache, Elie 01 July 2016 (has links)
Cette thèse porte sur différents problèmes d'optimisation combinatoire dont nous avons caractérisé la difficulté en décrivant des réductions et des algorithmes polynomiaux exacts ou approchés.En particulier, nous étudions le problème de trouver, dans un graphe orienté sans cycle dont les sommets sont étiquetés, un chemin qui passe par un maximum d'étiquettes différentes. Nous établissons qu'il n'existe pas d'algorithme polynomial avec un facteur constant pour ce problème. Nous présentons aussi un schéma qui permet d'obtenir, pour tout $epsilon >0$, un algorithme polynomial qui calcule un chemin collectant $ O(OPT^{1-epsilon})$ étiquettes.Nous étudions ensuite des variantes du problème de l'arbre couvrant de poids minimum auquel nous ajoutons des contraintes de distance et d'intermédiarité. Nous prouvons que certaines variantes se résolvent en temps polynomial comme des problèmes de calcul d'un libre de poids minimum commun à deux matroïdes. Pour une autre variante, nous présentons un algorithme d'approximation facteur 2 et nous prouvons qu'il n'existe pas d'algorithme polynomial avec un meilleur facteur constant.Enfin, nous étudions un problème d'améliorations de réseaux du point de vue du partage des coûts. Nous montrons que la fonction de coût associée à ce problème est sous-modulaire et nous utilisons ce résultat pour déduire un mécanisme de partage des coûts qui possède plusieurs bonnes propriétés. / In this thesis, we investigate several combinatorial optimization problems and characterize their computational complexity and approximability by providing polynomial reductions and exact or approximation algorithms.In particular, we study the problem of finding, in a vertex-labeled directed acyclic graph, a path collecting a maximum number of distinct labels. We prove that no polynomial time constant factor approximation algorithm exists for this problem. Furthermore, we describe a scheme that produces, for any $epsilon >0$, a polynomial time algorithm that computes a solution collecting $O(OPT^{1-epsilon})$ labels. Then, we study several variants of the minimum cost spanning tree problem that take into account distance and betweenness constraints. We prove that most of these problems can be solved in polynomial time using a reduction to the weighted matroid intersection problem. For an other problem, we give a factor 2 approximation algorithm and prove the optimality of this ratio.Finally, we study a network improvement problem from a cost sharing perspective. We establish that the cost function corresponding to this problem is submodular and use this result to derive a cost sharing mechanism having several good properties.
|
19 |
Path Planning for Variable Scrutiny Multi-Robot CoverageBradner, Kevin M. 29 May 2020 (has links)
No description available.
|
20 |
Spanning k-Trees and Loop-Erased Random SurfacesParsons, Kyle 27 October 2017 (has links)
No description available.
|
Page generated in 0.0597 seconds