Spelling suggestions: "subject:"apatial extremes"" "subject:"apatial xtremes""
1 |
Flexible Modeling of Non-Stationary Extremal Dependence Using Spatially-Fused LASSO and Ridge PenaltiesShao, Xuanjie 05 April 2022 (has links)
Statistical modeling of a nonstationary spatial extremal dependence structure is a challenging problem. In practice, parametric max-stable processes are commonly used for modeling spatially-indexed block maxima data, where the stationarity assumption is often made to make inference easier. However, this assumption is unreliable for data observed over a large or complex domain. In this work, we develop a computationally-efficient method to estimate nonstationary extremal dependence using max-stable processes, which builds upon and extends an approach recently proposed in the classical geostatistical literature. More precisely, we divide the spatial domain into a fine grid of subregions, each having its own set of dependence-related parameters, and then impose LASSO ($L_1$) or Ridge ($L_2$) penalties to obtain spatially-smooth estimates. We then also subsequently merge the subregions sequentially together with a new algorithm to enhance the model's performance. Here we focus on the popular Brown-Resnick process, although extensions to other classes of max-stable processes are also possible. We discuss practical strategies for adequately defining the subregions and merging them back together. To make our method suitable for high-dimensional datasets, we exploit a pairwise likelihood approach and discuss the choice of pairs to achieve reasonable computational and statistical efficiency. We apply our proposed method to a dataset of annual maximum temperature in Nepal and show that our approach fits reasonably and realistically captures the complex non-stationarity in the extremal dependence.
|
2 |
Local Likelihood Approach for High-Dimensional Peaks-Over-Threshold InferenceBaki, Zhuldyzay 14 May 2018 (has links)
Global warming is affecting the Earth climate year by year, the biggest difference being observable in increasing temperatures in the World Ocean. Following the long- term global ocean warming trend, average sea surface temperatures across the global tropics and subtropics have increased by 0.4–1◦C in the last 40 years. These rates become even higher in semi-enclosed southern seas, such as the Red Sea, threaten- ing the survival of thermal-sensitive species. As average sea surface temperatures are projected to continue to rise, careful study of future developments of extreme temper- atures is paramount for the sustainability of marine ecosystem and biodiversity. In this thesis, we use Extreme-Value Theory to study sea surface temperature extremes from a gridded dataset comprising 16703 locations over the Red Sea. The data were provided by Operational SST and Sea Ice Analysis (OSTIA), a satellite-based data system designed for numerical weather prediction. After pre-processing the data to account for seasonality and global trends, we analyze the marginal distribution of ex- tremes, defined as observations exceeding a high spatially varying threshold, using the Generalized Pareto distribution. This model allows us to extrapolate beyond the ob- served data to compute the 100-year return levels over the entire Red Sea, confirming the increasing trend of extreme temperatures. To understand the dynamics govern- ing the dependence of extreme temperatures in the Red Sea, we propose a flexible local approach based on R-Pareto processes, which extend the univariate Generalized Pareto distribution to the spatial setting. Assuming that the sea surface temperature varies smoothly over space, we perform inference based on the gradient score method
over small regional neighborhoods, in which the data are assumed to be stationary in space. This approach allows us to capture spatial non-stationarity, and to reduce the overall computational cost by taking advantage of distributed computing resources. Our results reveal an interesting extremal spatial dependence structure: in particular, from our estimated model, we conclude that significant extremal dependence prevails for distances up to about 2500 km, which roughly corresponds to the Red Sea length.
|
3 |
Extrêmes multivariés et spatiaux : approches spectrales et modèles elliptiques / Multivariate and spatial extremes : spectral approaches and elliptical modelsOpitz, Thomas 30 October 2013 (has links)
Cette thèse présente des contributions à la modélisation multivariée et spatiale des valeurs extrêmes. Au travers d'une extension de la représentation par coordonnées pseudo-polaires, représentation très utilisée en théorie des valeurs extrêmes, une approche unifiée et générale pour la modélisation en valeurs extrêmes est proposée. La variable radiale de ces coordonnées est donnée par une fonction non négative et homogène dite fonction d'agrégation permettant d'agréger un vecteur dans un scalaire. La loi de la variable d'angle est caractérisée par une mesure dite angulaire ou spectrale. Nous définissons les lois radiales de Pareto et une version inversée de ces lois, toutes deux motivées dans le cadre de la variation régulière multivariée. Cette classe de modèles est assez souple et permet de modéliser les valeurs extrêmes de vecteurs aléatoires dont la variable agrégée est à décroissance de type Pareto ou Pareto inversé. Dans le cadre spatial, nous mettons l'accent sur les lois bivariées à l'instar des méthodes couramment utilisées. Des approches inférentielles originales sont développées, fondées sur un nouvel outil de représentation appelé spectrogramme. Le spectrogramme est constitué des mesures spectrales caractérisant le comportement extrémalbivarié. Enfin, la construction dite spectrale du processus limite max-stable des processus elliptiques, à savoir le processus t-extrémal, est présentée. Par ailleurs, nous énonçons des méthodesd'inférence et explorons des méthodes de simulation des processus de type max-stable et de type Pareto. L'intérêt pratique des modèles et méthodes proposés est illustré au travers d'applications à des données environnementales et financières. / This PhD thesis presents contributions to the modelling of multivariate andspatial extreme values. Using an extension of commonly used pseudo-polar representations inextreme value theory, we propose a general unifying approachto modelling of extreme value dependence. The radial variable of such coordinates is obtained from applying a nonnegative and homogeneous function, called aggregation function, allowing us to aggregate a vector into a scalar value. The distribution of the angle component is characterized by a so-called angular or spectral measure. We define radial Pareto distribution and an inverted version of thesedistributions, both motivated within the framework of multivariateregular variation. This flexible class of models allows for modelling of extreme valuesin random vectors whose aggregated variable shows tail decay of thePareto or inverted Pareto type. For the purpose of spatial extreme value analysis, we follow standard methodology in geostatistics of extremes and put the focus on bivariatedistributions. Inferentialapproaches are developed based on the notion of a spectrogram,a tool composed of thespectral measures characterizing bivariate extreme value behavior. Finally, the so-called spectral construction of the max-stable limit processobtained from elliptical processes, known as extremal-t process, ispresented. We discuss inference and explore simulation methods for the max-stableprocess and the corresponding Pareto process. The utility of the proposed models and methods is illustrated throughapplications to environmental and financial data.
|
4 |
Theoretical study of some statistical procedures applied to complex data / Etude théorique de quelques procédures statistiques pour le traitement de données complexesCottet, Vincent R. 17 November 2017 (has links)
La partie principale de cette thèse s'intéresse à développer les aspects théoriques et algorithmiques pour trois procédures statistiques distinctes. Le premier problème abordé est la complétion de matrices binaires. Nous proposons un estimateur basé sur une approximation variationnelle pseudo-bayésienne en utilisant une fonction de perte différente de celles utilisées auparavant. Nous pouvons calculer des bornes non asymptotiques sur le risque intégré. L'estimateur proposé est beaucoup plus rapide à calculer qu'une estimation de type MCMC et nous montrons sur des exemples qu'il est efficace en pratique. Le deuxième problème abordé est l'étude des propriétés théoriques du minimiseur du risque empirique pénalisé pour des fonctions de perte lipschitziennes. Nous pouvons ensuite appliquer les résultats principaux sur la régression logistique avec la pénalisation SLOPE ainsi que sur la complétion de matrice. Le troisième chapitre développe une approximation de type Expectation-Propagation quand la vraisemblance n'est pas explicite. On utilise alors l'approximation ABC dans un second temps. Cette procédure peut s'appliquer à beaucoup de modèles et est beaucoup plus précise et rapide. Elle est appliquée à titre d'exemple sur un modèle d'extrêmes spatiaux. / The main part of this thesis aims at studying the theoretical and algorithmic aspects of three distinct statistical procedures. The first problem is the binary matrix completion. We propose an estimator based on a variational approximation of a pseudo-Bayesian estimator. We use a different loss function of the ones used in the literature. We are able to compute non asymptotic risk bounds. It is much faster to compute the estimator than a MCMC method and we show on examples that it is efficient in practice. In a second part we study the theoretical properties of the regularized empirical risk minimizer for Lipschitz loss functions. We are therefore able to apply it on the logistic regression with the SLOPE regularization and on the matrix completion as well. The third chapter develops an Expectation-Propagation approximation when the likelihood is not explicit. We then use an ABC approximation in a second stage. This procedure may be applied to many models and is more precise and faster than the classic ABC approximation. It is used in a spatial extremes model.
|
5 |
Outils et modèles pour l'étude de quelques risques spatiaux et en réseaux : application aux extrêmes climatiques et à la contagion en finance / Tools and models for the study of some spatial and network risks : application to climate extremes and contagion in financeKoch, Erwan 02 July 2014 (has links)
Cette thèse s’attache à développer des outils et modèles adaptés a l’étude de certains risques spatiaux et en réseaux. Elle est divisée en cinq chapitres. Le premier consiste en une introduction générale, contenant l’état de l’art au sein duquel s’inscrivent les différents travaux, ainsi que les principaux résultats obtenus. Le Chapitre 2 propose un nouveau générateur de précipitations multi-site. Il est important de disposer de modèles capables de produire des séries de précipitations statistiquement réalistes. Alors que les modèles précédemment introduits dans la littérature concernent essentiellement les précipitations journalières, nous développons un modèle horaire. Il n’implique qu’une seule équation et introduit ainsi une dépendance entre occurrence et intensité, processus souvent considérés comme indépendants dans la littérature. Il comporte un facteur commun prenant en compte les conditions atmosphériques grande échelle et un terme de contagion auto-regressif multivarié, représentant la propagation locale des pluies. Malgré sa relative simplicité, ce modèle reproduit très bien les intensités, les durées de sècheresse ainsi que la dépendance spatiale dans le cas de la Bretagne Nord. Dans le Chapitre 3, nous proposons une méthode d’estimation des processus maxstables, basée sur des techniques de vraisemblance simulée. Les processus max-stables sont très adaptés à la modélisation statistique des extrêmes spatiaux mais leur estimation s’avère délicate. En effet, la densité multivariée n’a pas de forme explicite et les méthodes d’estimation standards liées à la vraisemblance ne peuvent donc pas être appliquées. Sous des hypothèses adéquates, notre estimateur est efficace quand le nombre d’observations temporelles et le nombre de simulations tendent vers l’infini. Cette approche par simulation peut être utilisée pour de nombreuses classes de processus max-stables et peut fournir de meilleurs résultats que les méthodes actuelles utilisant la vraisemblance composite, notamment dans le cas où seules quelques observations temporelles sont disponibles et où la dépendance spatiale est importante / This thesis aims at developing tools and models that are relevant for the study of some spatial risks and risks in networks. The thesis is divided into five chapters. The first one is a general introduction containing the state of the art related to each study as well as the main results. Chapter 2 develops a new multi-site precipitation generator. It is crucial to dispose of models able to produce statistically realistic precipitation series. Whereas previously introduced models in the literature deal with daily precipitation, we develop a hourly model. The latter involves only one equation and thus introduces dependence between occurrence and intensity; the aforementioned literature assumes that these processes are independent. Our model contains a common factor taking large scale atmospheric conditions into account and a multivariate autoregressive contagion term accounting for local propagation of rainfall. Despite its relative simplicity, this model shows an impressive ability to reproduce real intensities, lengths of dry periods as well as the spatial dependence structure. In Chapter 3, we propose an estimation method for max-stable processes, based on simulated likelihood techniques. Max-stable processes are ideally suited for the statistical modeling of spatial extremes but their inference is difficult. Indeed the multivariate density function is not available and thus standard likelihood-based estimation methods cannot be applied. Under appropriate assumptions, our estimator is efficient as both the temporal dimension and the number of simulation draws tend towards infinity. This approach by simulation can be used for many classes of max-stable processes and can provide better results than composite-based methods, especially in the case where only a few temporal observations are available and the spatial dependence is high
|
Page generated in 0.066 seconds