• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 26
  • 7
  • Tagged with
  • 72
  • 72
  • 42
  • 41
  • 19
  • 16
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la variabilité hémodynamique chez l’enfant et l’adulte sains en IRMf / Study of hemodynamic variability in sane adult and children in fMRI

Badillo, Solveig 18 November 2013 (has links)
En IRMf, les conclusions de paradigmes expérimentaux restent encore sujettes à caution dans la mesure où elles supposent une connaissance a priori du couplage neuro-vasculaire, c’est-à- dire de la fonction de réponse hémodynamique qui modélise le lien entre la stimulation et le signal mesuré. Afin de mieux appréhender les changements neuronaux et vasculaires induits par la réalisation d’une tâche cognitive en IRMf, il apparaît donc indispensable d’étudier de manière approfondie les caractéristiques de la réponse hémodynamique. Cette thèse apporte un nouvel éclairage sur cette étude, en s’appuyant sur une méthode originale d’analyse intra-sujet des données d’IRMf : la Détection-Estimation Conjointe (« Joint Detection-Estimation » en anglais, ou JDE). L’approche JDE modélise de façon non paramétrique et multivariée la réponse hémodynamique, tout en détectant conjointement les aires cérébrales activées en réponse aux stimulations d’un paradigme expérimental. La première contribution de cette thèse a été centrée sur l’analyse approfondie de la variabilité hémodynamique, tant inter-individuelle qu’inter-régionale, au niveau d’un groupe de jeunes adultes sains. Ce travail a permis de valider la méthode JDE au niveau d’une population et de mettre en évidence la variabilité hémodynamique importante apparaissant dans certaines régions cérébrales : lobes pariétal, temporal, occipital, cortex moteur. Cette variabilité est d’autant plus importante que la région est impliquée dans des processus cognitifs plus complexes.Un deuxième axe de recherche a consisté à se focaliser sur l’étude de l’organisation hémodynamique d’une aire cérébrale particulièrement importante chez les êtres humains, la région du langage. Cette fonction étant liée à la capacité d’apprentissage de la lecture, deux groupes d’enfants sains, âgés respectivement de 6 et 9 ans, en cours d’apprentissage ou de consolidation de la lecture, ont été choisis pour mener cette étude. Deux apports méthodologiques importants ont été proposés. Tout d’abord, une extension multi-sessions de l’approche JDE (jusqu’alors limitée au traitement de données mono-session en IRMf) a été mise au point afin d’améliorer la robustesse et la reproductibilité des résultats. Cette extension a permis de mettre en évidence, au sein de la population d’enfants, l’évolution de la réponse hémodynamique avec l’âge, au sein de la région du sillon temporal supérieur. Ensuite, un nouveau cadre a été développé pour contourner l’une des limitations de l’approche JDE « standard », à savoir la parcellisation a priori des données en régions fonctionnellement homogènes. Cette parcellisation est déterminante pour la suite de l’analyse et a un impact sur les résultats hémodynamiques. Afin de s’affranchir d’un tel choix, l’alternative mise au point combine les résultats issus de différentes parcellisations aléatoires des données en utilisant des techniques de «consensus clustering». Enfin, une deuxième extension de l’approche JDE a été mise en place pour estimer la forme de la réponse hémodynamique au niveau d’un groupe de sujets. Ce modèle a pour l’instant été validé sur simulations, et nous prévoyons de l’appliquer sur les données d’enfant pour améliorer l’étude des caractéristiques temporelles de la réponse BOLD dans les réseaux du langage.Ce travail de thèse propose ainsi d’une part des contributions méthodologiques nouvelles pour caractériser la réponse hémodynamique en IRMf, et d’autre part une validation et une application des approches développées sous un éclairage neuroscientifique. / In fMRI, the conclusions of experimental paradigms remain unreliable as far as they supposesome a priori knowledge on the neuro-vascular coupling which is characterized by thehemodynamic response function modeling the link between the stimulus input and the fMRIsignal as output. To improve our understanding of the neuronal and vascular changes inducedby the realization of a cognitive task given in fMRI, it seems thus critical to study thecharacteristics of the hemodynamic response in depth.This thesis gives a new perspective on this topic, supported by an original method for intra-subjectanalysis of fMRI data : the Joint Detection-Estimation (or JDE). The JDE approachmodels the hemodynamic response in a not parametric and multivariate manner, while itjointly detects the cerebral areas which are activated in response to stimulations deliveredalong an experimental paradigm.The first contribution of this thesis is centered on the thorough analysis of the interindividualand inter-regiona hemodynamic variability from a population of young healthyadults. This work has allowed to validate the JDE method at the group level and to highlightthe striking hemodynamic variability in some cerebral regions : parietal, temporal, occipitallobes, motor cortex. This variability is much more important as the region is involved in morecomplex cognitive processes.The second research axis has consisted in focusing on the study of the hemodynamic orga-nizationof a particularly important cerebral area in Humans, the language system. Becausethis function embeds the reading learning ability, groups of healthy children of 6 and 9 yearsold respectively, who were in the process of learning or of strenghting reading, were chosen forthis study. Two important methodological contributions have been proposed. First, a multi-sessionsextension of the JDE approach (until now limited to the processing of mono-sessiondata in fMRI) was worked out in order to improve the robustness and the reproducibility ofthe results. Then, a new framework was developed to overcome the main shortcoming of theJDE approach. The latter indeed relies on a prior parcellation of the data in functionally ho-mogeneousregions, the choice of which is critical for the subsequent inference and impacts thehemodynamic results. In order to avoid this a priori choice, the finalized alternative combinesthe results from various random data fragmentations by using “consensus clustering”.Finally, a second extension of the JDE approach was developed in order to robustly estimatethe shape of the hemodynamic response at the group level. So far, this model was validatedon simulations, and we plan to apply it on children data to improve the study of the BOLDresponse temporal characteristics in the language areas. Thus, this PhD work proposes onone hand new methodological contributions to characterize the hemodynamic response infMRI, and on the other hand a validation and a neuroscientific application of the proposedapproaches.
2

Contributions à l'approche bayésienne pour la stéréovision multi-vues

Gargallo I Piracés, Pau 11 February 2008 (has links) (PDF)
La stéréovision multi-vues consiste à retrouver la forme des objets à partir de plusieurs images prises de différents points de vue connus. Ceci est un problème inverse où on cherche la cause (l'objet) alors qu'on observe l'effet (les images). Sous une optique bayésienne, la solution serait une reconstruction qui reproduise au mieux les images observées tout en restant plausible a priori. Dans cette thèse, nous présentons des modèles et des méthodes permettant de minimiser la différence entre les images observées et les images obtenues par le rendu de la reconstruction. Pour ceci, il est nécessaire de tenir compte des occultations qui on lieu lors du rendu. Le résultat principal de la thése est le calcul de la dérivée de l'erreur de reprojection par rapport aux variations de surface qui tiens en compte les changements de visibilité lors que la surface se déforme.
3

Estimation et Classification de Signaux Altimétriques / Estimation and Classification of Altimetric Signals

Severini, Jérôme 07 October 2010 (has links)
La mesure de la hauteur des océans, des vents de surface (fortement liés aux températures des océans), ou encore de la hauteur des vagues sont un ensemble de paramètres nécessaires à l'étude des océans mais aussi au suivi de leurs évolutions : l'altimétrie spatiale est l'une des disciplines le permettant. Une forme d'onde altimétrique est le résultat de l'émission d'une onde radar haute fréquence sur une surface donnée (classiquement océanique) et de la mesure de la réflexion de cette onde. Il existe actuellement une méthode d'estimation non optimale des formes d'onde altimétriques ainsi que des outils de classifications permettant d'identifier les différents types de surfaces observées. Nous proposons dans cette étude d'appliquer la méthode d'estimation bayésienne aux formes d'onde altimétriques ainsi que de nouvelles approches de classification. Nous proposons enfin la mise en place d'un algorithme spécifique permettant l'étude de la topographie en milieu côtier, étude qui est actuellement très peu développée dans le domaine de l'altimétrie. / After having scanned the ocean levels during thirteen years, the french/american satelliteTopex-Poséidon disappeared in 2005. Topex-Poséidon was replaced by Jason-1 in december 2001 and a new satellit Jason-2 is waited for 2008. Several estimation methods have been developed for signals resulting from these satellites. In particular, estimators of the sea height and wave height have shown very good performance when they are applied on waveforms backscattered from ocean surfaces. However, it is a more challenging problem to extract relevant information from signals backscattered from non-oceanic surfaces such as inland waters, deserts or ices. This PhD thesis is divided into two parts : A first direction consists of developing classification methods for altimetric signals in order to recognize the type of surface affected by the radar waveform. In particular, a specific attention will be devoted to support vector machines (SVMs) and functional data analysis for this problem. The second part of this thesis consists of developing estimation algorithms appropriate to altimetric signals obtained after reflexion on non-oceanic surfaces. Bayesian algorithms are currently under investigation for this estimation problem. This PhD is co-supervised by the french society CLS (Collect Localisation Satellite) (seehttp://www.cls.fr/ for more details) which will in particular provide the real altimetric data necessary for this study.
4

Résolution de problème inverse et propagation d'incertitudes : application à la dynamique des gaz compressibles / Inverse problem and uncertainty quantification : application to compressible gas dynamics

Birolleau, Alexandre 30 April 2014 (has links)
Cette thèse porte sur la propagation d'incertitudes et la résolution de problème inverse et leur accélération par Chaos Polynomial. L'objectif est de faire un état de l'art et une analyse numérique des méthodes spectrales de type Chaos Polynomial, d'en comprendre les avantages et les inconvénients afin de l'appliquer à l'étude probabiliste d'instabilités hydrodynamiques dans des expériences de tubes à choc de type Richtmyer-Meshkov. Le second chapitre fait un état de l'art illustré sur plusieurs exemples des méthodes de type Chaos Polynomial. Nous y effectuons son analyse numérique et mettons en évidence la possibilité d'améliorer la méthode, notamment sur des solutions irrégulières (en ayant en tête les difficultés liées aux problèmes hydrodynamiques), en introduisant le Chaos Polynomial généralisé itératif. Ce chapitre comporte également l'analyse numérique complète de cette nouvelle méthode. Le chapitre 3 a fait l'objet d'une publication dans Communication in Computational Physics, celle-ci a récemment été acceptée. Il fait l'état de l'art des méthodes d'inversion probabilistes et focalise sur l'inférence bayesienne. Il traite enfin de la possibilité d'accélérer la convergence de cette inférence en utilisant les méthodes spectrales décrites au chapitre précédent. La convergence théorique de la méthode d'accélération est démontrée et illustrée sur différents cas-test. Nous appliquons les méthodes et algorithmes des deux chapitres précédents à un problème complexe et ambitieux, un écoulement de gaz compressible physiquement instable (configuration tube à choc de Richtmyer-Meshkov) avec une analyse poussée des phénomènes physico-numériques en jeu. Enfin en annexe, nous présentons quelques pistes de recherche supplémentaires rapidement abordées au cours de cette thèse. / This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developping shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis.
5

Modélisation de l'impact d'un bloc rocheux sur un terrain naturel, application à la trajectographie des chutes de blocs

Bourrier, Franck 14 November 2008 (has links) (PDF)
Ce travail de thèse porte sur la caractérisation du rebond d'un bloc sur un terrain naturel dans la perspective d'améliorer les modèles de détermination de l'aléa de chute de blocs. L'impact d'un bloc rocheux sur un sol composé d'éboulis est modélisé par la Méthode des Elements Discrets. La comparaison entre les résultats de simulation et les résultats d'essais à échelle réduite d'impact sur un sol granulaire grossier met en évidence que le modèle numérique développé assure une prédiction pertinente du rebond pour un nombre réduit de paramètres de simulation à calibrer. L'analyse de l'impact à l'aide du modèle numérique montre que l'interaction entre l'impactant et le sol peut être décomposée en trois phases : le transfert énergétique initial du bloc vers le sol, la propagation d'une onde de compression du point d'impact vers l'intérieur du sol et la réflexion de l'onde de compression sur le substratum. L'étude des échanges énergétiques lors de ces trois phases conduit à la définition d'un diagramme d'existence du rebond délimitant les domaines d'arrêt et de rebond de l'impactant et à l'identification de trois régimes d'impact. Le traitement statistique des résultats de simulation par des méthodes statistiques basées sur l'inférence Bayésienne permet également de définir une loi d'impact stochastique. Cette loi est représentative de la variabilité des vitesses du bloc après impact en fonction des paramètres cinématiques incidents et de l'arrangement géométrique des particules du sol au voisinage du point d'impact. Enfin, suite à l'intégration de la loi stochastique d'impact dans le contexte de l'analyse trajectographique, une approche probabiliste globale permettant la caractérisation détaillée de l'aléa de chute de bloc ainsi que l'implantation et le dimensionnement d'ouvrages de protection est proposée.
6

Programmation Bayésienne des Robots

Lebeltel, Olivier 08 October 1999 (has links) (PDF)
Cette thèse propose une méthode originale de programmation de robot fondée sur l'inférence et l'apprentissage bayésien. Cette méthode traite formellement des problèmes d'incertitude et d'incomplétude inhérents au domaine considéré. En effet, la principale difficulté de la programmation des robots vient de l'inévitable incomplétude des modèles utilisés. Nous exposons le formalisme de description d'une tâche robotique ainsi que les méthodes de résolutions. Ce formalisme est inspiré de la théorie du calcul des probabilités, proposée par le physicien E.T. Jaynes : "Probability as Logic". L'apprentissage et les techniques de maximum d'entropie traduisent l'incomplétude en incertitude. L'inférence bayésienne offre un cadre formel permettant de raisonner avec cette incertitude. L'apport principal de cette thèse est la définition d'un système générique de programmation pour la robotique et son application expérimentale. Nous l'illustrons en utilisant ce système pour programmer une application de surveillance pour un robot mobile : le Khepera. Pour cela, nous utilisons des ressources génériques de programmation appelées "descriptions". Nous montrons comment définir et utiliser de manière incrémentale ces ressources (comportements réactifs, fusion capteur, reconnaissance de situations et séquences de comportements) dans un cadre systématique et unifié. Nous discutons des différents avantages de notre approche : expression des connaissances préalables, prise en compte et restitution de l'incertitude, programmation directe et inverse. Nous proposons des perspectives à ce travail : choix d'architecture et planification. Nous situons notre travail dans un cadre épistémologique plus vaste en opposant, dans le cadre de la robotique autonome, l'approche "classique" relevant de la "cognition de haut niveau" et l'approche "réactive" associée à une "cognition de bas niveau". Nous montrons finalement comment nos travaux proposent de faire le lien entre ces deux extrêmes.
7

Aide à la décision dans la gestion des parcs de compteurs d'eau potable

Pasanisi, Alberto 01 1900 (has links) (PDF)
La métrologie des compteurs d'eau se dégrade au long de leur vie opérationnelle, entraînant, pour la plupart des compteurs actuellement utilisés en France, une sous-estimation du volume d'eau facturé. Ce phénomène est source de problèmes pour les distributeurs d'eau: il se traduit en un manque à gagner non négligeable et détermine une situation d'inégalité entre les usagers. En outre, une réglementation, de plus en plus exigeante, obligera bientôt les distributeurs à limiter la proportion d'appareils à métrologie imparfaite en dessous d'une valeur fixée. La planification des renouvellements des compteurs est, par conséquent, un problème complexe qui demande la mise en place d'une stratégie optimale. N'importe quelle méthode de planification nécessite la connaissance préliminaire de la métrologie des compteurs en conditions réelles d'exploitation. Le but de cette thèse est de fournir des éléments utiles à la mise en place des règles de gestion optimale adoptées par la Compagnie Générale des Eaux. L'étude de la dégradation de la métrologie se fait avec un modèle dynamique (markovien) à quatre états discrets à métrologie de plus en plus dégradée. Les calculs d'inférence sont réalisés dans un cadre bayésien avec des techniques MCMC (Markov Chain Monte Carlo). Cette méthode d'estimation est une alternative, plus que valide, aux procédures basées sur la recherche du maximum de la vraisemblance sous contraintes. Finalement, on montre que le modèle est capable de fournir des prévisions directement utilisables par les décideurs: l'estimation du sous-comptage et de la probabilité de non-conformité, en fonction de l'âge, de l'agressivité du site et de la consommation annuelle.
8

Estimation et Classification des Signaux Altimétriques

Severini, Jerome, Mailhes, Corinne, Tourneret, Jean-Yves 07 October 2010 (has links) (PDF)
La mesure de la hauteur des océans, des vents de surface (fortement liés aux températures des océans), ou encore de la hauteur des vagues sont un ensemble de paramètres nécessaires à l'étude des océans mais aussi au suivi de leurs évolutions : l'altimétrie spatiale est l'une des disciplines le permettant. Une forme d'onde altimétrique est le résultat de l'émission d'une onde radar haute fréquence sur une surface donnée (classiquement océanique) et de la mesure de la réflexion de cette onde. Il existe actuellement une méthode d'estimation non optimale des formes d'onde altimétriques ainsi que des outils de classifications permettant d'identifier les différents types de surfaces observées. Nous proposons dans cette étude d'appliquer la méthode d'estimation bayésienne aux formes d'onde altimétriques ainsi que de nouvelles approches de classification. Nous proposons enfin la mise en place d'un algorithme spécifique permettant l'étude de la topographie en milieu côtier, étude qui est actuellement très peu développée dans le domaine de l'altimétrie.
9

Analyse probabiliste, étude combinatoire et estimation paramétrique pour une classe de modèles de croissance de plantes avec organogenèse stochastique.

Loi, Cédric 31 May 2011 (has links) (PDF)
Dans cette thèse, nous nous intéressons à une classe particulière de modèles stochastiques de croissance de plantes structure-fonction à laquelle appartient le modèle GreenLab. L'objectif est double. En premier lieu, il s'agit d'étudier les processus stochastiques sous-jacents à l'organogenèse. Un nouveau cadre de travail combinatoire reposant sur l'utilisation de grammaires formelles a été établi dans le but d'étudier la distribution des nombres d'organes ou plus généralement des motifs dans la structure des plantes. Ce travail a abouti 'a la mise en place d'une méthode symbolique permettant le calcul de distributions associées 'a l'occurrence de mots dans des textes générés aléatoirement par des L-systèmes stochastiques. La deuxième partie de la thèse se concentre sur l'estimation des paramètres liés au processus de création de biomasse par photosynthèse et de son allocation. Le modèle de plante est alors écrit sous la forme d'un modèle de Markov caché et des méthodes d'inférence bayésienne sont utilisées pour résoudre le problème.
10

Analyse probabiliste, étude combinatoire et estimation paramétrique pour une classe de modèles de croissance de plantes avec organogenèse stochastique / Probability analysis, combinatorial study and parametric estimation for a class of growth models of plants with stochastic development

Loi, Cédric 31 May 2011 (has links)
Dans cette thèse, nous nous intéressons à une classe particulière de modèles stochastiques de croissance de plantes structure-fonction à laquelle appartient le modèle GreenLab. L’objectif est double. En premier lieu, il s’agit d’étudier les processus stochastiques sous-jacents à l’organogenèse. Un nouveau cadre de travail combinatoire reposant sur l’utilisation de grammaires formelles a été établi dans le but d’étudier la distribution des nombres d’organes ou plus généralement des motifs dans la structure des plantes. Ce travail a abouti `a la mise en place d’une méthode symbolique permettant le calcul de distributions associées `a l’occurrence de mots dans des textes générés aléatoirement par des L-systèmes stochastiques. La deuxième partie de la thèse se concentre sur l’estimation des paramètres liés au processus de création de biomasse par photosynthèse et de son allocation. Le modèle de plante est alors écrit sous la forme d’un modèle de Markov caché et des méthodes d’inférence bayésienne sont utilisées pour résoudre le problème. / This PhD focuses on a particular class of stochastic models of functional-structural plant growth to which the GreenLab model belongs. First, the stochastic processes underlying the organogenesis phenomenon were studied. A new combinatorial framework based on formal grammars was built to study the distributions of the number of organs or more generally patterns in plant structures. This work led to the creation of a symbolic method which allows the computation of the distributions associated to word occurrences in random texts generated by stochastic L-systems. The second part of the PhD tackles the estimation of the parameters of the functional submodel (linked to the creation of biomass by photosynthesis and its allocation). For this purpose, the plant model was described by a hidden Markov model and Bayesian inference methods were used to solve the problem.

Page generated in 0.0724 seconds