Spelling suggestions: "subject:"polynômes duu chaos"" "subject:"polynômes dud chaos""
1 |
Optimisation en présence d’incertitudes / Optimization in the presence of uncertaintiesHoldorf Lopez, Rafael 31 May 2010 (has links)
L’optimisation est un sujet très important dans tous les domaines. Cependant, parmi toutes les applications de l’optimisation, il est difficile de trouver des exemples de systèmes à optimiser qui ne comprennent pas un certain niveau d'incertitude sur les valeurs de quelques paramètres. Le thème central de cette thèse est donc le traitement des différents aspects de l’optimisation en présence d’incertitudes. Nous commençons par présenter un bref état de l’art des méthodes permettant de prendre en compte les incertitudes dans l’optimisation. Cette revue de la littérature a permis de constater une lacune concernant la caractérisation des propriétés probabilistes du point d’optimum de fonctions dépendant de paramètres aléatoires. Donc, la première contribution de cette thèse est le développement de deux méthodes pour approcher la fonction densité de probabilité (FDP) d’un tel point : la méthode basée sur la Simulation de Monte Carlo et la méthode de projection en dimension finie basée sur l’Approximation par polynômes de chaos. Les résultats numériques ont montré que celle-ci est adaptée à l’approximation de la FDP du point optimal du processus d'optimisation dans les situations étudiées. Il a été montré que la méthode numérique est capable d’approcher aussi des moments d'ordre élevé du point optimal, tels que l’aplatissement et l’asymétrie. Ensuite, nous passons au traitement de contraintes probabilistes en utilisant l’optimisation fiabiliste. Dans ce sujet, une nouvelle méthode basée sur des coefficients de sécurité est développée. Les exemples montrent que le principal avantage de cette méthode est son coût de calcul qui est très proche de celui de l’optimisation déterministe conventionnelle, ce qui permet son couplage avec un algorithme d’optimisation globale arbitraire. / The optimization is a very important tool in several domains. However, among its applications, it is hard to find examples of systems to be optimized that do not possess a certain uncertainty level on its parameters. The main goal of this thesis is the treatment of different aspects of the optimization under uncertainty. We present a brief review of the literature on this topic, which shows the lack of methods able to characterize the probabilistic properties of the optimum point of functions that depend on random parameters. Thus, the first main contribution of this thesis is the development of two methods to eliminate this lack: the first is based on Monte Carlo Simulation (MCS) (considered as the reference result) and the second is based on the polynomial chaos expansion (PCE). The validation of the PCE based method was pursued by comparing its results to those provided by the MCS method. The numerical analysis shows that the PCE method is able to approximate the probability density function of the optimal point in all the problems solved. It was also showed that it is able to approximate even high order statistical moments such as the kurtosis and the asymmetry. The second main contribution of this thesis is on the treatment of probabilistic constraints using the reliability based design optimization (RBDO). Here, a new RBDO method based on safety factors was developed. The numerical examples showed that the main advantage of such method is its computational cost, which is very close to the one of the standard deterministic optimization. This fact makes it possible to couple the new method with global optimization algorithms.
|
2 |
La décomposition en polynôme du chaos pour l'amélioration de l'assimilation de données ensembliste en hydraulique fluvialeEl Moçayd, Nabil 01 March 2017 (has links) (PDF)
Ce travail porte sur la construction d'un modèle réduit en hydraulique fluviale avec une méthode de décomposition en polynôme du chaos. Ce modèle réduit remplace le modèle direct afin de réduire le coût de calcul lié aux méthodes ensemblistes en quantification d'incertitudes et assimilation de données. Le contexte de l'étude est la prévision des crues et la gestion de la ressource en eau. Ce manuscrit est composé de cinq parties, chacune divisée en chapitres. La première partie présente un état de l'art des travaux en quantification des incertitudes et en assimilation de données dans le domaine de l'hydraulique ainsi que les objectifs de la thèse. On présente le cadre de la prévision des crues, ses enjeux et les outils dont on dispose pour prévoir la dynamique des rivières. On présente notamment la future mission SWOT qui a pour but de mesurer les hauteurs d'eau dans les rivières avec un couverture globale à haute résolution. On précise notamment l'apport de ces mesures et leur complémentarité avec les mesures in-situ. La deuxième partie présente les équations de Saint-Venant, qui décrivent les écoulements dans les rivières, ainsi qu'une discrétisation numérique de ces équations, telle qu'implémentée dans le logiciel Mascaret-1D. Le dernier chapitre de cette partie propose des simplifications des équations de Saint-Venant. La troisième partie de ce manuscrit présente les méthodes de quantification et de réduction des incertitudes. On présente notamment le contexte probabiliste de la quantification d'incertitudes et d'analyse de sensibilité. On propose ensuite de réduire la dimension d'un problème stochastique quand on traite de champs aléatoires. Les méthodes de décomposition en polynômes du chaos sont ensuite présentées. Cette partie dédiée à la méthodologie s'achève par un chapitre consacré à l'assimilation de données ensemblistes et à l'utilisation des modèles réduits dans ce cadre. La quatrième partie de ce manuscrit est dédiée aux résultats. On commence par identifier les sources d'incertitudes en hydraulique que l'on s'attache à quantifier et réduire par la suite. Un article en cours de révision détaille la validation d'un modèle réduit pour les équations de Saint-Venant en régime stationnaire lorsque l'incertitude est majoritairement portée par les coefficients de frottement et le débit à l'amont. On montre que les moments statistiques, la densité de probabilité et la matrice de covariances spatiales pour la hauteur d'eau sont efficacement et précisément estimés à l'aide du modèle réduit dont la construction ne nécessite que quelques dizaines d'intégrations du modèle direct. On met à profit l'utilisation du modèle réduit pour réduire le coût de calcul du filtre de Kalman d'Ensemble dans le cadre d'un exercice d'assimilation de données synthétiques de type SWOT. On s'intéresse précisément à la représentation spatiale de la donnée telle que vue par SWOT: couverture globale du réseau, moyennage spatial entre les pixels observés. On montre notamment qu'à budget de calcul donné les résultats de l'analyse d'assimilation de données qui repose sur l'utilisation du modèle réduit sont meilleurs que ceux obtenus avec le filtre classique. On s'intéresse enfin à la construction du modèle réduit en régime instationnaire. On suppose ici que l'incertitude est liée aux coefficients de frottement. Il s'agit à présent de juger de la nécessité du recalcul des coefficients polynomiaux au fil du temps et des cycles d'assimilation de données. Pour ce travail seul des données in-situ ont été considérées. On suppose dans un deuxième temps que l'incertitude est portée par le débit en amont du réseau, qui est un vecteur temporel. On procède à une décomposition de type Karhunen-Loève pour réduire la taille de l'espace incertain aux trois premiers modes. Nous sommes ainsi en mesure de mener à bien un exercice d'assimilation de données. Pour finir, les conclusions et les perspectives de ce travail sont présentées en cinquième partie.
|
3 |
Résolution de problème inverse et propagation d'incertitudes : application à la dynamique des gaz compressibles / Inverse problem and uncertainty quantification : application to compressible gas dynamicsBirolleau, Alexandre 30 April 2014 (has links)
Cette thèse porte sur la propagation d'incertitudes et la résolution de problème inverse et leur accélération par Chaos Polynomial. L'objectif est de faire un état de l'art et une analyse numérique des méthodes spectrales de type Chaos Polynomial, d'en comprendre les avantages et les inconvénients afin de l'appliquer à l'étude probabiliste d'instabilités hydrodynamiques dans des expériences de tubes à choc de type Richtmyer-Meshkov. Le second chapitre fait un état de l'art illustré sur plusieurs exemples des méthodes de type Chaos Polynomial. Nous y effectuons son analyse numérique et mettons en évidence la possibilité d'améliorer la méthode, notamment sur des solutions irrégulières (en ayant en tête les difficultés liées aux problèmes hydrodynamiques), en introduisant le Chaos Polynomial généralisé itératif. Ce chapitre comporte également l'analyse numérique complète de cette nouvelle méthode. Le chapitre 3 a fait l'objet d'une publication dans Communication in Computational Physics, celle-ci a récemment été acceptée. Il fait l'état de l'art des méthodes d'inversion probabilistes et focalise sur l'inférence bayesienne. Il traite enfin de la possibilité d'accélérer la convergence de cette inférence en utilisant les méthodes spectrales décrites au chapitre précédent. La convergence théorique de la méthode d'accélération est démontrée et illustrée sur différents cas-test. Nous appliquons les méthodes et algorithmes des deux chapitres précédents à un problème complexe et ambitieux, un écoulement de gaz compressible physiquement instable (configuration tube à choc de Richtmyer-Meshkov) avec une analyse poussée des phénomènes physico-numériques en jeu. Enfin en annexe, nous présentons quelques pistes de recherche supplémentaires rapidement abordées au cours de cette thèse. / This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developping shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis.
|
4 |
Propagation d'incertitudes et analyse de sensibilité pour la modélisation de l'infiltration et de l'érosionRousseau, Marie 17 December 2012 (has links) (PDF)
Nous étudions la propagation et la quantification d'incertitudes paramétriques au travers de modèles hydrologiques pour la simulation des processus d'infiltration et d'érosion en présence de pluie et/ou de ruissellement. Les paramètres incertains sont décrits dans un cadre probabiliste comme des variables aléatoires indépendantes dont la fonction de densité de probabilité est connue. Cette modélisation probabiliste s'appuie sur une revue bibliographique permettant de cerner les plages de variations des paramètres. L'analyse statistique se fait par échantillonage Monte Carlo et par développements en polynômes de chaos. Nos travaux ont pour but de quantifier les incertitudes sur les principales sorties du modèle et de hiérarchiser l'influence des paramètres d'entrée sur la variabilité de ces sorties par une analyse de sensibilité globale. La première application concerne les effets de la variabilité et de la spatialisation de la conductivité hydraulique à saturation du sol dans le modèle d'infiltration de Green--Ampt pour diverses échelles spatiales et temporelles. Notre principale conclusion concerne l'importance de l'état de saturation du sol. La deuxième application porte sur le modèle d'érosion de Hairsine--Rose. Une des conclusions est que les interactions paramétriques sont peu significatives dans le modèle de détachement par la pluie mais s'avèrent importantes dans le modèle de détachement par le ruissellement
|
5 |
Analyse de sensibilité globale et polynômes de chaos pour l'estimation des paramètres : application aux transferts en milieu poreuxFajraoui, Noura 21 January 2014 (has links) (PDF)
La gestion des transferts des contaminants en milieu poreux représentent une préoccupation croissante et revêtent un intérêt particulier pour le contrôle de la pollution dans les milieux souterrains et la gestion de la ressource en eau souterraine, ou plus généralement la protection de l'environnement. Les phénomènes d'écoulement et de transport de polluants sont décrits par des lois physiques traduites sous forme d'équations algébro-différentielles qui dépendent d'un grand nombre de paramètres d'entrée. Pour la plupart, ces paramètres sont mal connus et souvent ne sont pas directement mesurables et/ou leur mesure peut être entachée d'incertitude. Ces travaux de thèse concernent l'étude de l'analyse de sensibilité globale et l'estimation des paramètres pour des problèmes d'écoulement et de transport en milieux poreux. Pour mener à bien ces travaux, la décomposition en polynômes de chaos est utilisée pour quantifier l'influence des paramètres sur la sortie des modèles numériques utilisés. Cet outil permet non seulement de calculer les indices de sensibilité de Sobol mais représente également un modèle de substitution (ou métamodèle) beaucoup plus rapide à exécuter. Cette dernière caractéristique est alors exploitée pour l'inversion des modèles à partir des données observées. Pour le problème inverse, nous privilégions l'approche Bayésienne qui offre un cadre rigoureux pour l'estimation des paramètres. Dans un second temps, nous avons développé une stratégie efficace permettant de construire des polynômes de chaos creux, où seuls les coefficients dont la contribution sur la variance du modèle est significative, sont retenus. Cette stratégie a donné des résultats très encourageants pour deux problèmes de transport réactif. La dernière partie de ce travail est consacrée au problème inverse lorsque les entrées du modèle sont des champs stochastiques gaussiens spatialement distribués. La particularité d'un tel problème est qu'il est mal posé car un champ stochastique est défini par une infinité de coefficients. La décomposition de Karhunen-Loève permet de réduire la dimension du problème et également de le régulariser. Toutefois, les résultats de l'inversion par cette méthode fournit des résultats sensibles au choix à priori de la fonction de covariance du champ. Un algorithme de réduction de la dimension basé sur un critère de sélection (critère de Schwartz) est proposé afin de rendre le problème moins sensible à ce choix.
|
6 |
Analyse de sensibilité globale et polynômes de chaos pour l'estimation des paramètres : application aux transferts en milieu poreux / Sensitivity analysis and polynomial chaos expansion for parameter estimation : application to transfer in porous mediaFajraoui, Noura 21 January 2014 (has links)
La gestion des transferts des contaminants en milieu poreux représentent une préoccupation croissante et revêtent un intérêt particulier pour le contrôle de la pollution dans les milieux souterrains et la gestion de la ressource en eau souterraine, ou plus généralement la protection de l’environnement. Les phénomènes d’écoulement et de transport de polluants sont décrits par des lois physiques traduites sous forme d'équations algébro-différentielles qui dépendent d'un grand nombre de paramètres d'entrée. Pour la plupart, ces paramètres sont mal connus et souvent ne sont pas directement mesurables et/ou leur mesure peut être entachée d’incertitude. Ces travaux de thèse concernent l’étude de l’analyse de sensibilité globale et l’estimation des paramètres pour des problèmes d’écoulement et de transport en milieux poreux. Pour mener à bien ces travaux, la décomposition en polynômes de chaos est utilisée pour quantifier l'influence des paramètres sur la sortie des modèles numériques utilisés. Cet outil permet non seulement de calculer les indices de sensibilité de Sobol mais représente également un modèle de substitution (ou métamodèle) beaucoup plus rapide à exécuter. Cette dernière caractéristique est alors exploitée pour l'inversion des modèles à partir des données observées. Pour le problème inverse, nous privilégions l'approche Bayésienne qui offre un cadre rigoureux pour l'estimation des paramètres. Dans un second temps, nous avons développé une stratégie efficace permettant de construire des polynômes de chaos creux, où seuls les coefficients dont la contribution sur la variance du modèle est significative, sont retenus. Cette stratégie a donné des résultats très encourageants pour deux problèmes de transport réactif. La dernière partie de ce travail est consacrée au problème inverse lorsque les entrées du modèle sont des champs stochastiques gaussiens spatialement distribués. La particularité d'un tel problème est qu'il est mal posé car un champ stochastique est défini par une infinité de coefficients. La décomposition de Karhunen-Loève permet de réduire la dimension du problème et également de le régulariser. Toutefois, les résultats de l'inversion par cette méthode fournit des résultats sensibles au choix à priori de la fonction de covariance du champ. Un algorithme de réduction de la dimension basé sur un critère de sélection (critère de Schwartz) est proposé afin de rendre le problème moins sensible à ce choix. / The management of transfer of contaminants in porous media is a growing concern and is of particular interest for the control of pollution in underground environments and management of groundwater resources, or more generally the protection of the environment. The flow and transport of pollutants are modeled by physical and phenomenological laws that take the form of differential-algebraic equations. These models may depend on a large number of input parameters. Most of these parameters are well known and are often not directly observable.This work is concerned with the impact of parameter uncertainty onto model predictions. To this end, the uncertainty and sensitivity analysis is an important step in the numerical simulation, as well as inverse modeling. The first study consists in estimating the model predictive uncertainty given the parameters uncertainty and identifying the most relevant ones. The second study is concerned with the reduction of parameters uncertainty from available observations.This work concerns the study of global sensitivity analysis and parameter estimation for problems of flow and transport in porous media. To carry out this work, the polynomials chaos expansion is used to quantify the influence of the parameters on the predictions of the numerical model. This tool not only calculate Sobol' sensitivity indices but also provides a surrogate model (or metamodel) that is faster to run. This feature is then exploited for models inversion when observations are available. For the inverse problem, we focus on Bayesian approach that offers a rigorous framework for parameter estimation.In a second step, we developed an effective strategy for constructing a sparse polynomials chaos expansion, where only coefficients whose contribution to the variance of the model is significant, are retained. This strategy has produced very encouraging results for two reactive transport problems.The last part of this work is devoted to the inverse problem when the inputs of the models are spatially distributed. Such an input is then treated as stochastic fields. The peculiarity of such a problem is that it is ill-posed because a stochastic field is defined by an infinite number of coefficients. The Karhunen-Loeve reduces the dimension of the problem and also allows regularizing it. However, the inversion with this method provides results that are sensitive to the presumed covariance function. An algorithm based on the selection criterion (Schwartz criterion) is proposed to make the problem less sensitive to this choice.
|
7 |
Propagation d'incertitudes et analyse de sensibilité pour la modélisation de l'infiltration et de l'érosion / Uncertainty propagation and sensitivity analysis for infiltration and erosion modelingRousseau, Marie 17 December 2012 (has links)
Nous étudions la propagation et la quantification d'incertitudes paramétriques au travers de modèles hydrologiques pour la simulation des processus d'infiltration et d'érosion en présence de pluie et/ou de ruissellement. Les paramètres incertains sont décrits dans un cadre probabiliste comme des variables aléatoires indépendantes dont la fonction de densité de probabilité est connue. Cette modélisation probabiliste s'appuie sur une revue bibliographique permettant de cerner les plages de variations des paramètres. L'analyse statistique se fait par échantillonage Monte Carlo et par développements en polynômes de chaos. Nos travaux ont pour but de quantifier les incertitudes sur les principales sorties du modèle et de hiérarchiser l'influence des paramètres d'entrée sur la variabilité de ces sorties par une analyse de sensibilité globale. La première application concerne les effets de la variabilité et de la spatialisation de la conductivité hydraulique à saturation du sol dans le modèle d'infiltration de Green--Ampt pour diverses échelles spatiales et temporelles. Notre principale conclusion concerne l'importance de l'état de saturation du sol. La deuxième application porte sur le modèle d'érosion de Hairsine--Rose. Une des conclusions est que les interactions paramétriques sont peu significatives dans le modèle de détachement par la pluie mais s'avèrent importantes dans le modèle de détachement par le ruissellement / We study parametric uncertainty propagation and quantification in hydrological models for the simulation of infiltration and erosion processes in the presence of rainfall and/or runoff. Uncertain input parameters are treated in a probabilistic framework, considering them as independent random variables defined by a fixed probability density function. This probabilistic modeling is based on a literature review to identify the range of variation of input parameters. The output statistical analysis is realized by Monte Carlo sampling and by polynomial chaos expansions. Our analysis aims at quantifying uncertainties in model outputs and establishing a hierarchy within input parameters according to their influence on output variability by means of global sensitivity analysis. The first application concerns the variability and spatial localization of the soil saturated hydraulic conductivity in the Green-Ampt infiltration model at different spatial and temporal scales. Our main conclusion is the importance of the soil saturation state. The second application deals with the Harisine--Rose erosion model. One conclusion is that the parametric interactions are not significant in the rainfall detachment model, but they prove to be important in the runoff detachment model
|
8 |
La décomposition en polynôme du chaos pour l'amélioration de l'assimilation de données ensembliste en hydraulique fluviale / Polynomial chaos expansion in fluvial hydraulics in Ensemble data assimilation frameworkEl Moçayd, Nabil 01 March 2017 (has links)
Ce travail porte sur la construction d'un modèle réduit en hydraulique fluviale avec une méthode de décomposition en polynôme du chaos. Ce modèle réduit remplace le modèle direct afin de réduire le coût de calcul lié aux méthodes ensemblistes en quantification d'incertitudes et assimilation de données. Le contexte de l'étude est la prévision des crues et la gestion de la ressource en eau. Ce manuscrit est composé de cinq parties, chacune divisée en chapitres. La première partie présente un état de l'art des travaux en quantification des incertitudes et en assimilation de données dans le domaine de l'hydraulique ainsi que les objectifs de la thèse. On présente le cadre de la prévision des crues, ses enjeux et les outils dont on dispose pour prévoir la dynamique des rivières. On présente notamment la future mission SWOT qui a pour but de mesurer les hauteurs d'eau dans les rivières avec un couverture globale à haute résolution. On précise notamment l'apport de ces mesures et leur complémentarité avec les mesures in-situ. La deuxième partie présente les équations de Saint-Venant, qui décrivent les écoulements dans les rivières, ainsi qu'une discrétisation numérique de ces équations, telle qu'implémentée dans le logiciel Mascaret-1D. Le dernier chapitre de cette partie propose des simplifications des équations de Saint-Venant. La troisième partie de ce manuscrit présente les méthodes de quantification et de réduction des incertitudes. On présente notamment le contexte probabiliste de la quantification d'incertitudes et d'analyse de sensibilité. On propose ensuite de réduire la dimension d'un problème stochastique quand on traite de champs aléatoires. Les méthodes de décomposition en polynômes du chaos sont ensuite présentées. Cette partie dédiée à la méthodologie s'achève par un chapitre consacré à l'assimilation de données ensemblistes et à l'utilisation des modèles réduits dans ce cadre. La quatrième partie de ce manuscrit est dédiée aux résultats. On commence par identifier les sources d'incertitudes en hydraulique que l'on s'attache à quantifier et réduire par la suite. Un article en cours de révision détaille la validation d'un modèle réduit pour les équations de Saint-Venant en régime stationnaire lorsque l'incertitude est majoritairement portée par les coefficients de frottement et le débit à l'amont. On montre que les moments statistiques, la densité de probabilité et la matrice de covariances spatiales pour la hauteur d'eau sont efficacement et précisément estimés à l'aide du modèle réduit dont la construction ne nécessite que quelques dizaines d'intégrations du modèle direct. On met à profit l'utilisation du modèle réduit pour réduire le coût de calcul du filtre de Kalman d'Ensemble dans le cadre d'un exercice d'assimilation de données synthétiques de type SWOT. On s'intéresse précisément à la représentation spatiale de la donnée telle que vue par SWOT: couverture globale du réseau, moyennage spatial entre les pixels observés. On montre notamment qu'à budget de calcul donné les résultats de l'analyse d'assimilation de données qui repose sur l'utilisation du modèle réduit sont meilleurs que ceux obtenus avec le filtre classique. On s'intéresse enfin à la construction du modèle réduit en régime instationnaire. On suppose ici que l'incertitude est liée aux coefficients de frottement. Il s'agit à présent de juger de la nécessité du recalcul des coefficients polynomiaux au fil du temps et des cycles d'assimilation de données. Pour ce travail seul des données in-situ ont été considérées. On suppose dans un deuxième temps que l'incertitude est portée par le débit en amont du réseau, qui est un vecteur temporel. On procède à une décomposition de type Karhunen-Loève pour réduire la taille de l'espace incertain aux trois premiers modes. Nous sommes ainsi en mesure de mener à bien un exercice d'assimilation de données. Pour finir, les conclusions et les perspectives de ce travail sont présentées en cinquième partie. / This work deals with the formulation of a surrogate model for the shallow water equations in fluvial hydraulics with a chaos polynomial expansion. This reduced model is used instead of the direct model to reduce the computational cost of the ensemble methods in uncertainty quantification and data assimilation. The context of the study is the flood forecasting and the management of water resources. This manuscript is composed of five parts, each divided into chapters. The first part presents a state of art of uncertainty quantification and data assimilation in the field of hydraulics as well as the objectives of this thesis. We present the framework of flood forecasting, its stakes and the tools available (numerical and observation) to predict the dynamics of rivers. In particular, we present the SWOT2 mission, which aims to measure the height of water in rivers with global coverage at high resolution. We highlight particularty their contribution and their complementarity with the in-situ measurements. The second part presents the shallow water equations, which describe the flows in the rivers. We are particularly interested in a 1D representation of the equations.We formulate a numerical discretization of these equations, as implemented in the Mascaret software. The last chapter of this part proposes some simplifications of the shallow-water equations. The third part of this manuscript presents the uncertainty quantification and reduced order methods. We present particularly the probabilistic context which makes it possible to define well-defined problem of uncertainty quantification and sensitivity analysis. It is then proposed to reduce the size of a stochastic problem when dealing with random fields in the context of geophysical models. The methods of chaos polynomial expansion are then presented ; we present in particular the different strategies for the computation of the polynomial coefficients. This section devoted to methodology concludes with a chapter devoted to Ensemble based data assimilation (specially the Ensemble Kalman filter) and the use of surrogate models in this framework. The fourth part of this manuscript is dedicated to the results. The first step is to identify the sources of uncertainty in hydraulics that should be quantified and subsequently reduced. An article, in the review state, details the method and the validation of a polynomial surrogate model for shallow water equations in steady state when the uncertainty is mainly carried by the friction coefficients and upstream inflow. The study is conducted on the river Garonne. It is shown that the statistical moments, the probability density and the spatial covariance matrice for the water height are efficiently and precisely estimated using the reduced model whose construction requires only a few tens of integrations of the direct model. The use of the surrogate model is used to reduce the computational cost of the Ensemble Kalman filter in the context of a synthetic SWOT like data assimilation exercise. The aim is to reconstruct the spatialized friction coefficients and the upstream inflow. We are interested precisely in the spatial representation of the data as seen by SWOT : global coverage of the network, spatial averaging between the observed pixels. We show in particular that at the given calculation budget (2500 simulations of the direct model) the results of the data assimilation analysis based on the use of the polynomial surrogate model are better than those obtained with the classical Ensemble Kalman filter. We are then interested in the construction of the reduced model in unsteady conditions. It is assumed initially that the uncertainty is carried with the friction coefficients. It is now necessary to judge the need for the recalculation of polynomial coefficients over time and data assimilation cycles. For this work only ponctual and in-situ data were considered. It is assumed in a second step that the uncertainty is carried by the upstr
|
9 |
Approche stochastique à base de modes d'ondes : théorie et applications en moyennes et hautes fréquencesBen Souf, Mohamed Amine 23 November 2012 (has links)
Ce travail de recherche a été réalisé au sein du Laboratoire de Tribologie et Dynamique des Systèmes de l’École Centrale de Lyon (FRANCE) en cotutelle avec l’Unité de Mécanique, Modélisation et Productique (U2MP) à l’École Nationale d’Ingénieurs de Sfax (TUNISIE) dans le cadre du projet européen "Mid-Frequency". La prédiction du comportement dynamique des structures est une tâche importante dans la phase de conception de tout produit mécanique. Le choix de l’outil ou de la méthode utilisée dépend de plusieurs facteurs. Pour un système dynamique, la bande de fréquence d’étude est l’un des paramètres essentiels étant donné qu’il existe des approches appropriées pour chaque domaine fréquentiel. Ces derniers seront rapidement inapplicables en changeant le domaine d’application. Par exemple, les méthodes dites hautes fréquences ou globales sont très limitées dans la partie basse du spectre. De même, les méthodes dites basses fréquences deviennent, numériquement, très lourdes et peu performantes si l’on monte en fréquence. Les moyennes fréquences représentent alors les hautes fréquences pour les méthodes globales et les basses fréquences pour les méthodes locales. Comme les incertitudes jouent un rôle important dans les comportements vibratoires en moyennes fréquences, le travail présenté de ce mémoire est une contribution à la recherche d’une approche peu coûteuse en temps de calcul permettant l’extension d’une méthode locale : la méthode des éléments finis ondulatoires, à cette bande de fréquence pour les systèmes à caractère non déterministe. Cette contribution consiste à tenir compte des incertitudes présentes dans le système étudié pour évaluer la dispersion des différents paramètres (spectraux, de diffusion, dynamiques, etc.) et leurs effets sur la réponse globale (cinématique et énergétique) de la structure. Le travail présenté peut être partagé en deux parties. La première concerne le développement des formulations explicites et directes des dispersions des différents paramètres. Cette partie se base sur l’utilisation de la méthode de perturbation à l’ordre un. La deuxième partie est une généralisation de la première. En effet, l’utilisant de la projection des variables aléatoires sur la base des polynômes de chaos permet une évaluation plus générale des effets des incertitudes sur la dynamique des structures périodiques en moyennes fréquences. / The prediction of dynamic behavior of structures is an important task in the design step of any mechanical product. There are many factors affecting the choice of the used methods. For a dynamic system, the frequency band under study is one of the important parameters since for each frequency range exists its appropriate approach which can be quickly inapplicable in other domains. For example, the high frequency methods are very limited in the lower part of the spectrum. Similarly, the so-called low-frequency methods become numerically inefficient if it goes up in frequency range. The mid-frequencies then represent the high-frequencies for global and low frequencies for local methods. Knowing that uncertainties play an important role on the vibro-acoustics behavior in mid-frequencies, the presented work is a contribution to the research approach, with inexpensive computing time, allowing the extension of a local method, called ’the wave finite element method’, in this frequency band. These contributions consist in taking into account uncertainties in the studied system to evaluate the dispersion of all parameters (spectral, diffusion, dynamics, etc.) and their effects on the global response (kinematic and energetic) of the structure. The presented work can be divided into two main parts. The first one involves the development of an explicit and direct formulation describing the dispersion of different parameters; this part is based on the first-order perturbation method. The second part is a generalization of the first one; indeed, using the chaos polynomial projection of all random variables allows a more general assessment of the effects of uncertainties on the dynamics of periodic structure in mid-frequency range.
|
10 |
Contribution à l'analyse de sensibilité des systèmes complexes : application à la dynamique du véhicule / Contribution to sensitivity analysis of complex systems : application to vehicle dynamicsHamza, Sabra 15 July 2015 (has links)
Le véhicule est un système dynamique complexe, composé de différents sous-systèmes de nature différente (moteur, système de freinage, suspension ...). Chaque sous-système est décrit par un modèle mathématique dépendant d’un nombre important de paramètres, très souvent incertains (méconnaissance, manque de mesures,…). L’incertitude sur les paramètres se propage à travers le modèle et se retrouve sur la sortie. Cette dernière représente les forces et moments mis en jeu dans le véhicule. L’incertitude sur la sortie n’est pas toujours tolérable pour des raisons de sécurité, précision,…Situé dans ce contexte, les travaux de la thèse consistent à proposer des méthodes d’analyse de sensibilité permettant de déterminer les paramètres dont les incertitudes ont un effet significatif sur le comportement d’un système donné, en particulier le véhicule. Dans une première partie, le cas des modèles à paramètres dépendants et suivant une distribution arbitraire est étudié. Une méthode, basée sur la décorrélation des paramètres par la décomposition de Cholesky, a été proposée. Pour résoudre le problème de la distribution arbitraire, l’approximation par polynôme du chaos arbitraire est adoptée, en construisant une base orthonormale en termes de moments statistiques non centrés des paramètres. Les indices de sensibilité, permettant de quantifier la contribution de chaque paramètre à la variance de la sortie, sont obtenus directement à partir des coefficients des polynômes du chaos ainsi obtenus. La méthode proposée est appliquée et validée sur un modèle de pneumatique. Dans la deuxième partie, le cas des modèles dynamiques est traité. Une méthode basée sur les dérivées partielles est explorée, puis une approche alternative est proposée. Elle utilise de façon originale des outils de l’Automatique, les grammiens d’atteignabilité et d’observabilité. L’influence des paramètres sur l’énergie consommée en entrée et restituée par le système en sortie est ainsi déterminée. L’avantage de cette technique est que les paramètres peuvent être classifiés selon leurs influences sur l’énergie consommée ou restituée, tout au long de la dynamique du système. D’autre part, l’étude de la sensibilité des paramètres sur les échanges de l’énergie, permet de déterminer un placement optimal des paramètres pour une optimisation de l’énergie consommée et restituée en sortie. Les deux méthodes proposées sont appliquées et validées sur un modèle bicyclette décrivant le comportement dynamique d’un véhicule. Dans la dernière partie, des tests sur véhicule d’essais ont été réalisés sur circuit. Les différentes approches d’analyse de sensibilité ont été appliquées sur les résultats d’essais, afin de recaler des modèles de pneumatique. / The vehicle is a complex dynamic system, composed of various subsystems of different kind (engine, braking system, suspension, etc.). Each subsystem is described by a mathematical model depending on a significant number of parameters, very often uncertain (unknown, lack of measures, etc.). The uncertainty on the parameters is propagated through the model and takes place on the model output. The model output represents the forces and moments involved in the vehicle. The uncertainty on the model output is not always tolerable for safety reasons, precision, etc. In this context, the aim of the thesis is to propose sensitivity analysis methods allowing to determine parameters whose uncertainties have a significant effect on the behavior of a given system. In the first part, the case of models with dependent parameters which follow an arbitrary distribution is studied. A method based on the decorrelation of the parameters using the decomposition of Cholesky, is proposed. To solve the problem of the arbitrary distribution, an approximation using arbitrary polynomial chaos is adopted and an orthonormal data basis is constructed in terms of non central statistical moments of parameters. Sensitivity indices, allowing to quantify the contribution of every parameter to the model output variance, is directly obtained from the polynomial chaos coefficients.The proposed method is applied and validated on a tyre model. In the second part, the case of the dynamic models is studied. A method based on partial derivative is explored. Then a new alternative approach is proposed. This method uses in an original way the control theory tools, the reachability and observability Gramians. The influence of the parameters is formulated in terms the energy consumed and restored by the system. The advantage of this technique is that the parameters can be classified according to their influences on the consumed or restored energy throughout the system dynamics. On the other hand, the study of the parameters sensitivity based on ratio energy exchanged, allows to determine an optimal placement of the parameters for an optimization of consumed and/or restored energy. Both proposed methods are applied and validated using bicycle model describing vehicle dynamic behavior. Finally, the various sensitivity approaches are applied to adjust tyre model parameters using vehicle measurements acquired during a steady-state maneuver.
|
Page generated in 0.0687 seconds