• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tyre model verification over off-road terrain

Stallmann, M.J. (Martin Joachim) January 2013 (has links)
Vehicle dynamic simulations form a significant part of the design and development process of vehicles. These simulations are used to study and improve the vehicle’s durability, ride comfort and handling capabilities. All forces acting on the vehicle are either generated in the tyre-road interface or are due to aerodynamic effects, where at low speeds the latter one can be ignored. The accuracy of the tyre model describing the forces on the tyre-road interface is thus of exceptional importance. It ensures that the simulation model is an accurate representation of the actual vehicle. Various approaches are adopted when developing mathematical tyre models. Many of these models are developed to study the handling capabilities of passenger cars over a smooth road. Passenger car tyres are the focal point as larger tyres introduce some difficulties due to their size and load rating. Off-road truck tyres also differ in their construction which will influence force and moment generation of the tyre. Research efforts are increasing to meet the need of tyre models that can describe the behaviour of the tyre over uneven terrain with sufficient accuracy. This thesis addresses the question of whether existing mathematical tyre models can accurately describe the forces and moments generated by a large off-road tyre while driving over rough terrain. The complexity of different mathematical tyre models varies greatly, as does the parameterisation efforts required to obtain the model parameters. The parameterization of most tyre models relies on some experimental test data that is used to extract the necessary information to fit model parameters. The selection of a suitable tyre model for a simulation is often dependent on the availability of such experimental data and the effort to identify the required parameters. In this study the parameterisation process for four different tyre models, are discussed in detail to highlight the difficulties in acquiring the test data and the effort to parameterize the model. The models considered are the One Point Contact, 3D Equivalent Volume contact, 3D Enveloping Contact and FTire model. Experimental measurements are conducted on a 16.00R20 Michelin XZL tyre. Laboratory tests, as well as field tests, over discrete obstacles and uneven hard surfaces are used for parameterisation and validation purposes. Simulation results are compared to experimental test data to determine whether the models could be used to describe the tyre road interactions with sufficient accuracy. Recommendations are made for tyre model selection and model accuracy for simulations over rough off-road surfaces. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Mechanical and Aeronautical Engineering / unrestricted
2

Optimal Tyre Management for a Formula One Car

West, Wilhelm Joachim January 2020 (has links)
Motorsport has become a multidisciplinary sport in which skilled engineers and strategists play as big a part in the team’s success as the athlete driving the car. In Formula One it is common practice for teams to have dedicated resources on the track that are supported by a second team back at the home base who analyses telemetry data and performs simulations to refine the racing strategy. Optimal control calculations are typically used to optimise vehicle setup parameters (such as ride height and heave spring stiffness) and driver inputs (such as braking and steering) specific to each track. Traditionally this approach has been employed by minimising time over a single lap. Although this is useful in qualifying simulations, there is an unexplored element of optimising a vehicle’s "race pace". Drivers complete qualifying laps using minimal fuel with new tyres to get the best possible lap time but this performance cannot be sustained throughout the whole race. Drivers need to manage their tyres so that they do not wear prematurely and have a detrimental effect on their performance. This work places an emphasis on tyre modelling and in particular how optimal control can be used to optimise a tyre management strategy. A model has been presented that reduces grip as a function of tyre wear. This ensures that the qualifying pace cannot be sustained indefinitely. A thermodynamic model consisting of two states (surface and carcass temperature) is used to calculate tyre wear, which ultimately dictates how much grip can be provided by each tyre. The objective function for the optimal control problem is to minimise time over multiple laps and the absolute tyre wear (in mm tread) is constrained to a predefined limit. This ensures that the consequences of pushing the car to its limits are considered: overheating temperatures and accelerated wear will be detrimental to racing performance. The optimal control solver needs to manage the tyre temperatures carefully over a racing distance. It has been shown that lap times degrade more severely as the tyres reach the end of their life. At some point in the race this drop off in performance will render the car uncompetitive and strategists can use this model to evaluate the performance of different tyre compounds at each track and to strategically plan pit stops during a race. / Dissertation (MEng (Electronic Engineering))--University of Pretoria, 2020. / Electrical, Electronic and Computer Engineering / MEng (Electronic Engineering) / Unrestricted
3

Contribution to the modelling of aircraft tyre-road interaction

Kiébré, Rimyalegdo 10 December 2010 (has links) (PDF)
This thesis is a part of the French national project called MACAO (Modélisation Avancée de Composants Aéronautiques et Outils associés). In collaboration with Messier-Dowty company (a landing gears manufacturer), the thesis has contributed to better understand the actual literature studies in the field of aircraft tyre-road interaction modelling and therefore, to help making an optimal choice of model for a specifie application. The objectives have been to propose models for representing the tyre behaviour on the ground with respect to the aircraft run types. Physical oriented models are preferred. To complete this study, a literature survey of the previous researches in tyre modelling for steady­state responses is first carried out. Then, based on the main factors playing an important role in tyre modelling, it is proposed a classification for the physical and the semi-empirical models, which are also investigated. Based on this classification, the study requirements and the measurement data constraints, an a priori choice of suitable models are studied. A further investigation of the tyre deformation at pure lateral slip is carried out. It has allowed to physically describe the mechanism of generation of the longitudinal component of the tyre force at pure lateral slip. This force is refened as induced longitudinal force. By taking this force into consideration, it has been possible to explain why the self-aligning moment can drop to zero before the tyre gets to full sliding at pure lateral slip. Besides, the sensitivity analysis is proposed as a means for determining the parameters that have most influence on the model output and thus, are responsible for the output uncertainty.
4

Contribution to the modelling of aircraft tyre-road interaction / Contribution à la modélisation de l'interface pneu-piste du train d'atterissage des avions

Kiébré, Rimyalegdo 10 December 2010 (has links)
La présente thèse est une partie du projet national français dénommé MACAO (Modélisation Avancée de Composants Aéronautiques et Outils associés). En collaboration avec Messier-Dowty (constructeur d'atterrisseurs d'avion), cette thèse contribue à une meilleure compréhension du comportement du pneu sur piste dans le domaine de l'aéronautique. L'objectif est de mettre en place des modèles capables de représenter le torseur des efforts au niveau de l'interface pneu-piste lors des différentes manœuvres de l'avion au sol en régime établi. Une priorité est accordée aux modèles dont les paramètres sont physiquement interprétables. De ce fait, un état de l'art des modèles de pneu en régime établi est d'abord réalisé. Un classement de ces modèles selon leurs motivations et limitations est aussi proposé. A l'aide de cette classification et en prenant en compte les exigences de l'étude, un choix a priori de modèles a été analysé. Les limites de ces modèles sont soulignées et une amélioration est proposée. Par ailleurs, une étude exhaustive de la déformation du pneu en situation de virage a été menée. Elle a permis de décrire la génération de la composante longitudinale de la force totale au niveau de l'interface pneu-piste. Elle est dite force longitudinale induite. Puis, en prenant en compte cette force, il a été possible d'expliquer pourquoi le moment d'auto-alignement peut repasser par zéro sans que le pneu ne soit en glissement total. Enfin, l'analyse de sensibilité est proposée comme une méthode permettant de déterminer les paramètres les plus influents de chaque modèle. Ces paramètres doivent alors être déterminés avec précision afin de réduire l'incertitude sur le modèle. / This thesis is a part of the French national project called MACAO (Modélisation Avancée de Composants Aéronautiques et Outils associés). In collaboration with Messier-Dowty company (a landing gears manufacturer), the thesis has contributed to better understand the actual literature studies in the field of aircraft tyre-road interaction modelling and therefore, to help making an optimal choice of model for a specifie application. The objectives have been to propose models for representing the tyre behaviour on the ground with respect to the aircraft run types. Physical oriented models are preferred. To complete this study, a literature survey of the previous researches in tyre modelling for steady­state responses is first carried out. Then, based on the main factors playing an important role in tyre modelling, it is proposed a classification for the physical and the semi-empirical models, which are also investigated. Based on this classification, the study requirements and the measurement data constraints, an a priori choice of suitable models are studied. A further investigation of the tyre deformation at pure lateral slip is carried out. It has allowed to physically describe the mechanism of generation of the longitudinal component of the tyre force at pure lateral slip. This force is refened as induced longitudinal force. By taking this force into consideration, it has been possible to explain why the self-aligning moment can drop to zero before the tyre gets to full sliding at pure lateral slip. Besides, the sensitivity analysis is proposed as a means for determining the parameters that have most influence on the model output and thus, are responsible for the output uncertainty.
5

Contribution à l'analyse de sensibilité des systèmes complexes : application à la dynamique du véhicule / Contribution to sensitivity analysis of complex systems : application to vehicle dynamics

Hamza, Sabra 15 July 2015 (has links)
Le véhicule est un système dynamique complexe, composé de différents sous-systèmes de nature différente (moteur, système de freinage, suspension ...). Chaque sous-système est décrit par un modèle mathématique dépendant d’un nombre important de paramètres, très souvent incertains (méconnaissance, manque de mesures,…). L’incertitude sur les paramètres se propage à travers le modèle et se retrouve sur la sortie. Cette dernière représente les forces et moments mis en jeu dans le véhicule. L’incertitude sur la sortie n’est pas toujours tolérable pour des raisons de sécurité, précision,…Situé dans ce contexte, les travaux de la thèse consistent à proposer des méthodes d’analyse de sensibilité permettant de déterminer les paramètres dont les incertitudes ont un effet significatif sur le comportement d’un système donné, en particulier le véhicule. Dans une première partie, le cas des modèles à paramètres dépendants et suivant une distribution arbitraire est étudié. Une méthode, basée sur la décorrélation des paramètres par la décomposition de Cholesky, a été proposée. Pour résoudre le problème de la distribution arbitraire, l’approximation par polynôme du chaos arbitraire est adoptée, en construisant une base orthonormale en termes de moments statistiques non centrés des paramètres. Les indices de sensibilité, permettant de quantifier la contribution de chaque paramètre à la variance de la sortie, sont obtenus directement à partir des coefficients des polynômes du chaos ainsi obtenus. La méthode proposée est appliquée et validée sur un modèle de pneumatique. Dans la deuxième partie, le cas des modèles dynamiques est traité. Une méthode basée sur les dérivées partielles est explorée, puis une approche alternative est proposée. Elle utilise de façon originale des outils de l’Automatique, les grammiens d’atteignabilité et d’observabilité. L’influence des paramètres sur l’énergie consommée en entrée et restituée par le système en sortie est ainsi déterminée. L’avantage de cette technique est que les paramètres peuvent être classifiés selon leurs influences sur l’énergie consommée ou restituée, tout au long de la dynamique du système. D’autre part, l’étude de la sensibilité des paramètres sur les échanges de l’énergie, permet de déterminer un placement optimal des paramètres pour une optimisation de l’énergie consommée et restituée en sortie. Les deux méthodes proposées sont appliquées et validées sur un modèle bicyclette décrivant le comportement dynamique d’un véhicule. Dans la dernière partie, des tests sur véhicule d’essais ont été réalisés sur circuit. Les différentes approches d’analyse de sensibilité ont été appliquées sur les résultats d’essais, afin de recaler des modèles de pneumatique. / The vehicle is a complex dynamic system, composed of various subsystems of different kind (engine, braking system, suspension, etc.). Each subsystem is described by a mathematical model depending on a significant number of parameters, very often uncertain (unknown, lack of measures, etc.). The uncertainty on the parameters is propagated through the model and takes place on the model output. The model output represents the forces and moments involved in the vehicle. The uncertainty on the model output is not always tolerable for safety reasons, precision, etc. In this context, the aim of the thesis is to propose sensitivity analysis methods allowing to determine parameters whose uncertainties have a significant effect on the behavior of a given system. In the first part, the case of models with dependent parameters which follow an arbitrary distribution is studied. A method based on the decorrelation of the parameters using the decomposition of Cholesky, is proposed. To solve the problem of the arbitrary distribution, an approximation using arbitrary polynomial chaos is adopted and an orthonormal data basis is constructed in terms of non central statistical moments of parameters. Sensitivity indices, allowing to quantify the contribution of every parameter to the model output variance, is directly obtained from the polynomial chaos coefficients.The proposed method is applied and validated on a tyre model. In the second part, the case of the dynamic models is studied. A method based on partial derivative is explored. Then a new alternative approach is proposed. This method uses in an original way the control theory tools, the reachability and observability Gramians. The influence of the parameters is formulated in terms the energy consumed and restored by the system. The advantage of this technique is that the parameters can be classified according to their influences on the consumed or restored energy throughout the system dynamics. On the other hand, the study of the parameters sensitivity based on ratio energy exchanged, allows to determine an optimal placement of the parameters for an optimization of consumed and/or restored energy. Both proposed methods are applied and validated using bicycle model describing vehicle dynamic behavior. Finally, the various sensitivity approaches are applied to adjust tyre model parameters using vehicle measurements acquired during a steady-state maneuver.
6

Analyse und Modellierung des Reifenübertragungsverhaltens bei transienten und extremen Fahrmanövern / Analysis and modelling of tyre transfer behaviour for transient and extreme driving manoeuvres

Einsle, Stefan 11 March 2011 (has links) (PDF)
Durch den zunehmenden Einsatz fahrdynamischer Regelsysteme und der Fahrzeugauslegung im Grenzbereich gewinnt die Modellierung des Reifenübertragungsverhaltens bei transienten und extremen Fahrmanövern signifikant an Bedeutung. Die im Rahmen dieser Arbeit neu entwickelten Messverfahren zur Analyse und Charakterisierung des transienten Reifenseitenkraftverhaltens zeigen, dass die bisher gewählten Verzögerungsansätze erster Ordnung, beschrieben durch die Einlauflänge, keine ausreichende Abbildungsgenauigkeit liefern. Folglich wird ein neuer Verzögerungsansatz zweiter Ordnung eingeführt und durch den Parameter Einlaufdämpfung zweckmäßig beschrieben. Weiterhin wird nachgewiesen, dass die allgemein gebräuchliche Schätzung der Einlauflänge aus Schräglaufsteifigkeit und Lateralsteifigkeit vor allem bei hohen Radlasten deutlich zu geringe Werte liefert. Zur Abdeckung eines möglichst breiten Anwendungsbereichs werden die Parametereinflüsse Radlast, Fülldruck, Sturz, Vorspur und Geschwindigkeit messtechnisch ermittelt und im neuen Modellansatz berücksichtigt. Auch für die quasistatische Schräglaufsteifigkeit wird ein neues Bestimmungsverfahren mit entsprechenden Einflussanalysen vorgestellt. Bei extremen Fahrmanövern spielt die Fahrzeugstabilität, welche hochsensitiv auf das Reifenverhalten unter Extrembelastungen reagiert, eine entscheidende Rolle. Auch für diesen Anwendungsfall werden neue Mess‐ und Parametrisierungsverfahren eingeführt. Im Gegensatz zu anderen Arbeiten wird auf den gesamten Entstehungsprozess von Reifenmodelldatensätzen eingegangen. Dieser besteht im Wesentlichen aus Reifenmessung, Signalverarbeitung, Auswahl charakteristischer Kennlinien, methodischer Reifenmodellauswahl, automatischer Parameteridentifikation und qualitativem sowie quantitativem Nachweis der Abbildungsgüte des entstandenen Datensatzes. In diesem Prozess werden Schwachstellen aufgezeigt und durch neue Methoden beseitigt. Die drei Reifenmodelle MF-Tyre, FTire und TM-Easy werden analysiert, parametrisiert und unter transienten und extremen Randbedingungen in Kombination mit MKS-Modellen validiert und getestet. Somit kann die Qualität der erzielten Ergebnisse im Verhältnis zum Parametrisierungsaufwand und der Prozesssicherheit für eine Einsatzempfehlung der verschiedenen Reifenmodelle herangeführt werden. Die Qualität der neuen Reifenmodelldatensätze in Verbindung mit der Radaufhängung wird anhand eines neu entwickelten hochdynamischen Achsprüfstandes durch den Vergleich von Messung und MKS-Simulation validiert. Dazu werden sowohl transiente als auch extreme Manöver mit deren realistischen Belastungssituationen nachgestellt. Auch der Einfluss auf die Gesamtfahrzeugsimulation wird anhand entsprechender Manöver nachgewiesen. Darüber hinaus erfolgt die Herleitung eines linearen Einspurmodells mit transientem Reifenseitenkraftverhalten im Zustandsraum, anhand dessen der dominante Reifeneinfluss auf die Gierreaktion von Fahrzeugen nachgewiesen wird. / Due to the growing influence of vehicle dynamic control systems and suspension dimensioning in stability regions, transient and extreme tyre transfer behaviour gains importance significantly. Two new measurement procedures are introduced to analyze and characterize this tyre behaviour. The results show that the commonly used estimation of the relaxation length by the quotient of cornering and lateral stiffness yields far too small values and that the first order transfer model is insufficient to describe the transient tyre lateral force behaviour. Consequently, a new second order approach is introduced and described by the new parameter relaxation damping. The performed parameter study regarding wheel load, inflation pressure, camber angle, toe angle and driving velocity covers a wide application range of tyres. Moreover, the quasi‐static cornering stiffness is measured and evaluated in an extended range with reduced temperature and wear influences. Extreme manoeuvres are utilized to examine the stability of vehicles, which is dominated by the tyre transfer behaviour under extreme conditions. A new measurement and parameter identification procedure for those conditions is portrayed, as well. This thesis depicts the entire process to obtain a tyre model dataset, namely tyre measurements, signal processing, selection of characteristic curves, methodical selection of a tyre model, automatic parameter identification and qualitative and quantitative evaluation of the final dataset. The tyre models MF‐Tyre, FTire, and TM‐Easy are analysed, parameterized and validated under transient and extreme conditions. A comparison of the results in relation to the complexity of the parameter identification and the process stability leads to global recommendations of applications for different tyre models. The quality of the created tyre model datasets in combination with a vehicle suspension is assessed by a comparison of measurements from the newly developed highly dynamical suspension test rig and equivalent multi‐body simulations. That is, transient and extreme manoeuvres are performed and analysed. Additionally, a linear single‐track model with transient tyre behaviour is been derived, that shows the dominant tyre influence on the vehicle’s yaw behaviour. Finally, the influence of the created tyre model datasets and the additional lateral transfer behaviour on full‐vehicle simulations is verified.
7

Analyse und Modellierung des Reifenübertragungsverhaltens bei transienten und extremen Fahrmanövern: Analysis and modelling of tyre transfer behaviour for transient and extreme driving manoeuvres

Einsle, Stefan 15 December 2010 (has links)
Durch den zunehmenden Einsatz fahrdynamischer Regelsysteme und der Fahrzeugauslegung im Grenzbereich gewinnt die Modellierung des Reifenübertragungsverhaltens bei transienten und extremen Fahrmanövern signifikant an Bedeutung. Die im Rahmen dieser Arbeit neu entwickelten Messverfahren zur Analyse und Charakterisierung des transienten Reifenseitenkraftverhaltens zeigen, dass die bisher gewählten Verzögerungsansätze erster Ordnung, beschrieben durch die Einlauflänge, keine ausreichende Abbildungsgenauigkeit liefern. Folglich wird ein neuer Verzögerungsansatz zweiter Ordnung eingeführt und durch den Parameter Einlaufdämpfung zweckmäßig beschrieben. Weiterhin wird nachgewiesen, dass die allgemein gebräuchliche Schätzung der Einlauflänge aus Schräglaufsteifigkeit und Lateralsteifigkeit vor allem bei hohen Radlasten deutlich zu geringe Werte liefert. Zur Abdeckung eines möglichst breiten Anwendungsbereichs werden die Parametereinflüsse Radlast, Fülldruck, Sturz, Vorspur und Geschwindigkeit messtechnisch ermittelt und im neuen Modellansatz berücksichtigt. Auch für die quasistatische Schräglaufsteifigkeit wird ein neues Bestimmungsverfahren mit entsprechenden Einflussanalysen vorgestellt. Bei extremen Fahrmanövern spielt die Fahrzeugstabilität, welche hochsensitiv auf das Reifenverhalten unter Extrembelastungen reagiert, eine entscheidende Rolle. Auch für diesen Anwendungsfall werden neue Mess‐ und Parametrisierungsverfahren eingeführt. Im Gegensatz zu anderen Arbeiten wird auf den gesamten Entstehungsprozess von Reifenmodelldatensätzen eingegangen. Dieser besteht im Wesentlichen aus Reifenmessung, Signalverarbeitung, Auswahl charakteristischer Kennlinien, methodischer Reifenmodellauswahl, automatischer Parameteridentifikation und qualitativem sowie quantitativem Nachweis der Abbildungsgüte des entstandenen Datensatzes. In diesem Prozess werden Schwachstellen aufgezeigt und durch neue Methoden beseitigt. Die drei Reifenmodelle MF-Tyre, FTire und TM-Easy werden analysiert, parametrisiert und unter transienten und extremen Randbedingungen in Kombination mit MKS-Modellen validiert und getestet. Somit kann die Qualität der erzielten Ergebnisse im Verhältnis zum Parametrisierungsaufwand und der Prozesssicherheit für eine Einsatzempfehlung der verschiedenen Reifenmodelle herangeführt werden. Die Qualität der neuen Reifenmodelldatensätze in Verbindung mit der Radaufhängung wird anhand eines neu entwickelten hochdynamischen Achsprüfstandes durch den Vergleich von Messung und MKS-Simulation validiert. Dazu werden sowohl transiente als auch extreme Manöver mit deren realistischen Belastungssituationen nachgestellt. Auch der Einfluss auf die Gesamtfahrzeugsimulation wird anhand entsprechender Manöver nachgewiesen. Darüber hinaus erfolgt die Herleitung eines linearen Einspurmodells mit transientem Reifenseitenkraftverhalten im Zustandsraum, anhand dessen der dominante Reifeneinfluss auf die Gierreaktion von Fahrzeugen nachgewiesen wird.:1 Einleitung 1.1 Stand der Forschung 1.2 Motivation und Ziele dieser Arbeit 1.3 Aufbau der Arbeit 2 Theoretische Grundlagen 2.1 Reifenkoordinatensysteme 2.2 Reifenprüfstände 2.3 Der Reifen unter Schräglauf 2.4 Grundlagen der Fahrdynamik und Einspurmodell 2.5 Eigenschaften elementarer Übertragungsglieder 2.6 Optimierungsverfahren 2.7 Sensitivitätsanalysen zur Systembetrachtung 2.8 Einbindung von Zwangsbedingungen in Mehrkörpersysteme 3 Transientes Reifenseitenkraftverhalten 3.1 Reifenverhalten nach SCHLIPPE\\DIETRICH 3.2 Reifenverhalten nach BÖHM 3.3 Reifenverhalten nach PACEJKA 3.4 Reifenverhalten nach RILL 3.5 Gegenüberstellung des transienten Reifenseitenkraftverhaltens 4 Reifenmodellierung 4.1 Einteilung der Reifenmodelle 4.2 Magic Formula Tyre: MF‐Tyre 4.3 Flexible Ring Tire Model: FTire 4.4 Tyre Model Easy: TM‐Easy 4.5 Handlungsempfehlungen für die Auswahl von Reifenmodellen 5 Messungen am Reifenprüfstand 5.1 Signalverarbeitung von Reifenmessdaten 5.2 Neue Reifenmessprozeduren 5.3 Statische Reifensteifigkeiten 5.4 Reifenverhalten beim Lenken im Stand 5.5 Schräglaufsteifigkeit 5.6 Übertragbare Seitenkraft – Reibbeiwert 5.7 Transientes Seitenkraftverhalten 5.8 Ergebnisse der Messungen am Reifenprüfstand 6 Parameteridentifikation von Reifenmodellen 6.1 Der virtuelle Reifenprüfstand (vRPS) 6.2 Abbildungsgüte kommerziell parametrisierter Reifendatensätze 6.3 Automatischer Gütereport von Reifenmodelldatensätzen 6.4 Parameteridentifikation von MF‐Tyre Datensätzen 6.5 Parameteridentifikation von FTire Datensätzen 6.6 Parameteridentifikation von TM‐Easy Datensätzen 6.7 Extrapolationsfähigkeit der Reifenmodelle 6.8 Übertragbarkeit der Reifenmodelldatensätze auf reale Straßen 6.9 Neue Ansätze zur Parametrisierung von Reifenmodellen 7 Eine neue transiente Zusatzkomponente 7.1 Vergleich verschiedener Übertragungsglieder im Frequenzbereich 7.2 Einbindung in MKS‐Modelle 7.3 Übertragungsmodul als nichtholonome Zwangsbedingung 7.4 Einbindung einer transienten Zusatzseitenkraft 7.5 Schlussfolgerungen zu Zusatzübertragungskomponenten 8 Reifenverhalten am neuen hochdynamischen Achsprüfstand 8.1 Der Aufbau des neuen Achsprüfstandes am IAD 8.2 Das MKS‐Modell des virtuellen Achsprüfstands 8.3 Vergleich der Spurstangenkräfte beim Lenken im Stand 8.4 Einfluss des transienten Reifenverhaltens am Achsprüfstand 8.5 Sinuslenken am Achsprüfstand 8.6 Extremmanöver am Beispiel Fishhook 8.7 Schlussfolgerungen aus den Achsprüfstandsuntersuchungen 9 Gesamtfahrzeugsimulation 9.1 Einspurmodell mit transientem Reifenverhalten 9.2 Mehrkörperfahrzeugmodell mit transientem Reifenverhalten 9.3 Fahrmanöver mit optimierten Reifenmodelldatensätzen 9.4 Beschreibung von Reifenkennwerten mit statistischen Methoden 9.5 Schlussfolgerungen aus der Gesamtfahrzeugsimulationen 10 Zusammenfassung und Ausblick / Due to the growing influence of vehicle dynamic control systems and suspension dimensioning in stability regions, transient and extreme tyre transfer behaviour gains importance significantly. Two new measurement procedures are introduced to analyze and characterize this tyre behaviour. The results show that the commonly used estimation of the relaxation length by the quotient of cornering and lateral stiffness yields far too small values and that the first order transfer model is insufficient to describe the transient tyre lateral force behaviour. Consequently, a new second order approach is introduced and described by the new parameter relaxation damping. The performed parameter study regarding wheel load, inflation pressure, camber angle, toe angle and driving velocity covers a wide application range of tyres. Moreover, the quasi‐static cornering stiffness is measured and evaluated in an extended range with reduced temperature and wear influences. Extreme manoeuvres are utilized to examine the stability of vehicles, which is dominated by the tyre transfer behaviour under extreme conditions. A new measurement and parameter identification procedure for those conditions is portrayed, as well. This thesis depicts the entire process to obtain a tyre model dataset, namely tyre measurements, signal processing, selection of characteristic curves, methodical selection of a tyre model, automatic parameter identification and qualitative and quantitative evaluation of the final dataset. The tyre models MF‐Tyre, FTire, and TM‐Easy are analysed, parameterized and validated under transient and extreme conditions. A comparison of the results in relation to the complexity of the parameter identification and the process stability leads to global recommendations of applications for different tyre models. The quality of the created tyre model datasets in combination with a vehicle suspension is assessed by a comparison of measurements from the newly developed highly dynamical suspension test rig and equivalent multi‐body simulations. That is, transient and extreme manoeuvres are performed and analysed. Additionally, a linear single‐track model with transient tyre behaviour is been derived, that shows the dominant tyre influence on the vehicle’s yaw behaviour. Finally, the influence of the created tyre model datasets and the additional lateral transfer behaviour on full‐vehicle simulations is verified.:1 Einleitung 1.1 Stand der Forschung 1.2 Motivation und Ziele dieser Arbeit 1.3 Aufbau der Arbeit 2 Theoretische Grundlagen 2.1 Reifenkoordinatensysteme 2.2 Reifenprüfstände 2.3 Der Reifen unter Schräglauf 2.4 Grundlagen der Fahrdynamik und Einspurmodell 2.5 Eigenschaften elementarer Übertragungsglieder 2.6 Optimierungsverfahren 2.7 Sensitivitätsanalysen zur Systembetrachtung 2.8 Einbindung von Zwangsbedingungen in Mehrkörpersysteme 3 Transientes Reifenseitenkraftverhalten 3.1 Reifenverhalten nach SCHLIPPE\\DIETRICH 3.2 Reifenverhalten nach BÖHM 3.3 Reifenverhalten nach PACEJKA 3.4 Reifenverhalten nach RILL 3.5 Gegenüberstellung des transienten Reifenseitenkraftverhaltens 4 Reifenmodellierung 4.1 Einteilung der Reifenmodelle 4.2 Magic Formula Tyre: MF‐Tyre 4.3 Flexible Ring Tire Model: FTire 4.4 Tyre Model Easy: TM‐Easy 4.5 Handlungsempfehlungen für die Auswahl von Reifenmodellen 5 Messungen am Reifenprüfstand 5.1 Signalverarbeitung von Reifenmessdaten 5.2 Neue Reifenmessprozeduren 5.3 Statische Reifensteifigkeiten 5.4 Reifenverhalten beim Lenken im Stand 5.5 Schräglaufsteifigkeit 5.6 Übertragbare Seitenkraft – Reibbeiwert 5.7 Transientes Seitenkraftverhalten 5.8 Ergebnisse der Messungen am Reifenprüfstand 6 Parameteridentifikation von Reifenmodellen 6.1 Der virtuelle Reifenprüfstand (vRPS) 6.2 Abbildungsgüte kommerziell parametrisierter Reifendatensätze 6.3 Automatischer Gütereport von Reifenmodelldatensätzen 6.4 Parameteridentifikation von MF‐Tyre Datensätzen 6.5 Parameteridentifikation von FTire Datensätzen 6.6 Parameteridentifikation von TM‐Easy Datensätzen 6.7 Extrapolationsfähigkeit der Reifenmodelle 6.8 Übertragbarkeit der Reifenmodelldatensätze auf reale Straßen 6.9 Neue Ansätze zur Parametrisierung von Reifenmodellen 7 Eine neue transiente Zusatzkomponente 7.1 Vergleich verschiedener Übertragungsglieder im Frequenzbereich 7.2 Einbindung in MKS‐Modelle 7.3 Übertragungsmodul als nichtholonome Zwangsbedingung 7.4 Einbindung einer transienten Zusatzseitenkraft 7.5 Schlussfolgerungen zu Zusatzübertragungskomponenten 8 Reifenverhalten am neuen hochdynamischen Achsprüfstand 8.1 Der Aufbau des neuen Achsprüfstandes am IAD 8.2 Das MKS‐Modell des virtuellen Achsprüfstands 8.3 Vergleich der Spurstangenkräfte beim Lenken im Stand 8.4 Einfluss des transienten Reifenverhaltens am Achsprüfstand 8.5 Sinuslenken am Achsprüfstand 8.6 Extremmanöver am Beispiel Fishhook 8.7 Schlussfolgerungen aus den Achsprüfstandsuntersuchungen 9 Gesamtfahrzeugsimulation 9.1 Einspurmodell mit transientem Reifenverhalten 9.2 Mehrkörperfahrzeugmodell mit transientem Reifenverhalten 9.3 Fahrmanöver mit optimierten Reifenmodelldatensätzen 9.4 Beschreibung von Reifenkennwerten mit statistischen Methoden 9.5 Schlussfolgerungen aus der Gesamtfahrzeugsimulationen 10 Zusammenfassung und Ausblick
8

Däckmodellering och prestandaanalys för Formula Student

Olsson, Hugo January 2024 (has links)
Arbetets syfte var att göra ett motiverat val av däck till bilen som KTH Formula Student planerar att utveckla till 2025. Detta gjordes genom att använda däckdata från FSAE TTC och utifrån den modellera alla däck med däckmodellen Magic Formula TNO MFTyre/MF-Swift 6.1. Denna modell innehåller variationer i däcktryck, camber och vertikal last. Därefter simulerades varvtid vid olika grenar som skidpad, autocross och endurance för att jämföra alla däcks prestanda. Dessutom kunde flera andra värden värda att jämföras beräknas utifrån däckmodellen och datan från FSAE TTC. Dessa var hållbarhet, däcktemperatur, däckens massa, sidkraftskoefficient, camberkänslighet och däckens fjäderkonstant. Alla dessa värden jämfördes till sist där varvtid och hållbarhet prioriterades. Tre däck fanns kvar i slutet vilka rekommenderades.

Page generated in 0.0397 seconds