• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatially fractionated proton therapy: A Monte Carlo verification

Fair, Jenna Leigh 27 May 2016 (has links)
Spatially fractionated radiation therapy (or grid) using megavoltage x-rays is a relatively new method of treating bulky (>8 cm) malignant tumors. Unlike the conventional approach in which the entire tumor is targeted with a nearly uniform radiation field, in grid the incident radiation is collimated with a special grid collimator. As such, only the volume under the open areas of the grid receives direct irradiation from the incident beam; the rest only sees scattered radiation and hence receives significantly less dose. Those regions seeing less dose serve as regrowth areas for normal tissues, thus reducing the normal tissue complication probability after the treatment. Although the grid dose distribution in a tumor is non-uniform, the regression of tumor mass has exhibited uniform regression clinically. Protons have two advantages over megavoltage x-rays which are typically used for grid: (1) protons scatter less in tissue, and (2) they have a fixed range in tissue (the Bragg peak) that can be used to target a tumor. The goal of this thesis is to computationally and experimentally assess the feasibility of grid using clinical proton beams. The proton pencil beams at the Provision Cancer Center in Knoxville, Tennessee, are used to create an array of beams mimicking the arrangement of beams in grid therapy. The dose distributions at various depths in a solid-water phantom are obtained computationally by the Monte Carlo code MCNP and validated by RayStation experimental Gafchromic film EBT3. The results are compared with those of the grid using megavoltage x-rays.
2

Spatial Frequency-Based Objective Function for Optimization of Dose Heterogeneity in Grid Therapy

Emil, Fredén January 2019 (has links)
In this project we introduced a spatial frequency-based objective function for optimization of dose distributions used in spatially fractionated radiotherapy (also known as grid therapy). Several studies indicate that tissues can tolerate larger mean doses of radiation if the dose is delivered heterogeneously or to a partial volume of the organ. The objective function rewards heterogeneous dose distributions in the collaterally irradiated healthy tissues and is based on the concept of a maximum stem-cell migration distance. The stem-cell depletion hypothesis stipulates that damaged tissues can be repopulated by nearby surviving stem-cells within a critical volume outlined by the maximum migration distance. Proton grid therapy dose distributions were calculated to study the viability of our spatial frequency-based objective function. These were computed analytically with a proton pencil beam dose kernel. A multi-slit collimator placed flush against the surface of a water phantom defined the entrance fluence. The collimator geometry was described by two free parameters: the slit width and the number of slits within a specified field width. Organs at risk (OARs) and a planning target volume (PTV) were defined. Two dose constraints were set on the PTV and objective function values were computed for the OARs. The objective function measures the high-frequency content of a masked dose distribution, where the distinction between low- and high frequencies was made based on a characteristic distance. Out of the feasible solutions, the irradiation geometry that produced the maximum objective function value was selected as the optimal solution. With the spatial frequency-based objective function we were able to find, by brute-force search, unique optimal solutions to the constrained optimization problem. The optimal solutions were found on the boundary of the solution space. The objective function can be applied directly to arbitrarily shaped regions of interest and to dose distributions produced by multiple field angles. The next step is to implement the objective function in an optimization environment of a commercial treatment planning system (TPS).

Page generated in 0.1156 seconds