• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 17
  • 15
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 181
  • 36
  • 33
  • 31
  • 30
  • 28
  • 20
  • 20
  • 18
  • 17
  • 17
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Factors affecting the timing and success of sockeye salmon spawning migrations

Crossin, Glenn Terrence 11 1900 (has links)
Migration timing is a conserved life-history trait. To address the hypothesis that reproductive hormones are principal determinants of migration timing, I physiologically biopsied over 1000 sockeye salmon and monitored their subsequent behaviour with acoustic and radio telemetry as they migrated from the Pacific Ocean toward and into the Fraser River, and then onward to distant spawning areas. Links between physiology, behaviour, and survival were examined. Circulating testosterone was found to be positively correlated with the rates of river entry in Late-run females but not in males, despite having concentrations that were equal if not higher than those of females. The notion of protandrous migration, in which males synchronize their activities to the reproductive and migratory schedules of females, was postulated as the basis for this difference. Once in river however, successful males and females were those that (1) took longest to enter the river, and (2) had high somatic energy, low testosterone, and low gill Na+,K+-ATPase activities. An experimental test of the effect of reproductive hormones on the regulation of migration timing proved inconclusive. Relative to controls, GnRH and (or) testosterone treatment did not influence rates of ocean travel by males. Unfortunately, no females were examined. Nevertheless, significant, positive correlations between initial testosterone and travel times were found irrespective of hormonal treatment, which was unexpected but consistent with the previous studies. In an experimental simulation of an ‘early’ migration, normally timed Late-run sockeye exposed to typical 10 ºC river temperatures and then released to complete migration were 68% successful. In contrast, salmon held at 18 °C and released were half as successful. The expression of a kidney parasite was near maximal in the 18 °C fish and undetectable in the 10 °C fish. Only gill Na+,K+-ATPase activity differed between groups, with a drop in the 18 °C fish. Though no clear stress, reproductive, or energetic differences were observed between groups, the ultimate effect of high temperature treatment was high disease expression, slowed migration speeds, and high migration mortality. Changes in reproductive schedules, due to changes in latitudinal ocean distributions, are discussed as potential causes of early migration by Late-run sockeye.
72

Yellow perch Perca flavescens gonadal development and spawning in the Indiana portion of Lake Michigan during 2009

Walters, Justin T. 24 July 2010 (has links)
Yellow perch Perca flavescens spawning was evaluated in southern Lake Michigan during 2009 to determine the timing, location, and extent of spawning activity. Maturity state (i.e., pre-spawn/post-spawn), gonadosomatic index (GSI), mean length, length frequency distributions, and sex group proportions were also evaluated. No egg skeins were discovered during the study. The GSI decreased during the duration of the spawn. Spent females were larger than pre-spawn females. Following the spawning season another assessment was conducted to determine whether differences existed in the spawning and post-spawning population demographics. Abundance, length frequency distributions, proportions, and relative stock density were evaluated. Abundance of fish in the post-spawning period increased six-fold and paralleled a shift in length frequency distribution to larger median size. An increase in the proportion of females and relative stock density from the spawning period to post-spawning period was discovered. These data infer adult fish were spawning elsewhere, and then migrating to Indiana. / Department of Biology
73

Yellow perch, Perca flavescens, behavior in the Indiana waters of Lake Michigan in 2009, 2011 and 2012

Starzynski, David A. 20 July 2013 (has links)
The Indiana waters of Lake Michigan were sampled weekly from May until August in 2009, 2011, and 2012 to determine the extent of yellow perch reproduction and the role Indiana waters play in yellow perch life history. Experimental gill nets were used to collect fish before, during, and after the spawning season from randomly selected sites along the Indiana shoreline. Yellow perch were then taken to an onshore processing station where they were weighed, measured, and visually examined to determine sex and maturity. Maturity stages of adult yellow perch were used to estimate the timing and duration of yellow perch spawning. Yellow perch population demographics were also compared to determine if different groups of yellow perch were present before and after the spawn. My data suggests that yellow perch spawning is strongly influenced by temperature and that Indiana waters are seasonally used by adult yellow perch for feeding. / Department of Biology
74

The salmon-forest

Hocking, Morgan David January 2005 (has links)
Cross-habitat subsidies of nutrients and prey can structure community processes in receiving ecosystems. Every autumn throughout the northern Pacific region, anadromous salmon (Oncorhynchus spp.) return to their natal watersheds to spawn and die. a landward migration that imports marine protein to estuarine, freshwater and terrestrial habitats. Spawning salmon regulate the population dynamics of many wildlife species and fertilize aquatic and terrestrial systems with their nutrients and carcasses. When salmon spawn at high densities, vertebrate predators such as bears (Ursus spp.) selectively forage on energy-rich components of the salmon and transfer partially-consumed carcasses to adjacent forests. Herein. I examine the ecosystem-level consequences of the salmon subsidy in forest food webs, with a primary focus on the role of terrestrial invertebrates in the consumption, distribution and cycling of salmon nutrients and energy in terrestrial habitats. Study watersheds occur throughout coastal British Columbia, with most comparisons from two productive systems on the central coast. Both have high-density salmon spawning and 5-10m waterfalls 1-2km from the estuary that block further upstream salmon migration. Using stable isotope analysis of 615N and 613C I find that there are two principal pathways in which salmon nutrients enter forest food webs: 1) direct consumption of salmon tissue and/or salmon consumers (enrichment in 615N and 613C); or 2) marine-nitrogen fertilization of soil and vegetation N pools (enrichment in 615N hut not &3C). There is a diverse community of terrestrial invertebrates (>60 species) directly associated with the decay of salmon carrion, although from a biomass perspective this is dominated by the terrestrial Diptera. I estimate that from 134-360g of Calliphora (Calliphoridae) maggots per meter of spawning length (or 3.5-9 million individuals in whole watershed) were generated from carcass transfer on the Clatse and Neekas, with the majority produced from the large-bodied chum (O. keta) relative to pink (O. gorbuscha). Processes of competition and predation on salmon-carrion produce temporal dietary shifts in higher-level consumers, and species-specific adaptations, including communal breeding in burying beetles (Nicrophorus spp.). Overall, the insect niche generated by the input of salmon carcasses directly increases the diversity, carrying capacity and food-chain length of riparian food webs. The bottom-up effects of salmon nutrient fertilization favours plants that are competitive in nutrient-rich soils and structures a community of macro-detritivores as the primary decomposers. Salmon-nutrient fertilization is detectable in multiple trophic guilds in riparian foodwebs, with estimates of %marine-derived nitrogen (%MDN) ranging as high as 78%. Across multiple watersheds, the pattern of %MDN enrichment is most strongly predicted by chum spawning density (kg/m), including the legacy of spawning density from the past. High a'5N and %MDN values can be used as indicators for intact ecosystem processes including the presence of wildlife transfer vectors, sufficient spawning densities to facilitate selective foraging, and the further distribution of salmon nutrients and energy by terrestrial insects. Ongoing declines in salmon escapement throughout the Pacific Rim have far greater ecological context in riparian food webs that previously recognized. The salmon-forest interaction highlights the evolutionary interdependence between marine and terrestrial ecosystems in the North Pacific, and the need for ecosystem-level conservation that includes salmon, their riparian habitats, and their vertebrate and invertebrate scavengers.
75

Influence of Surface Currents in the Dispersal Pathways of Eggs of Cubera Snapper, Lutjanus cyanopterus (Cuvier, 1828), at a Spawning Aggregation Site at Gladden Spit, Belize

Mendez-Jimenez, Adriana 2012 August 1900 (has links)
Most large reef fish use a migratory reproductive strategy and tend to spawn in aggregations that occur at predictable locations and times. Though numerous hypotheses have been formulated to explain the reasons behind this phenomenon, there remain few data to evaluate the relative merits of various hypotheses. Oceanographic variables and lunar cycles are believed to drive the timing and location of this reproductive strategy. However, the dynamics of the interaction between coastal currents, water temperature, biomass concentrations, spawning site selection and gamete transport are still unclear. This study aimed to examine the influence that currents exert on gametes released at spawning aggregations of Cubera snapper Lutjanus cyanopterus (Cuvier, 1828) at Gladden Spit, Belize. It was hypothesized that surface currents flowed offshore at the time and location of spawning. However, observations from this study, using Lagrangian and Eulerian methods, indicated that eggs most likely travel westerly towards the reef and into the reef channel. The dispersal rate of eggs appeared to be explained by a power relationship, with buoyant fertilized eggs dispersing horizontally such that the area of the spawning cloud increased with time. Egg density within the spawning cloud generally decreased over time as it dispersed with the predominant surface currents. Most importantly low-cost surface drifters area an appropriate, highly replicable way to monitor surface ocean currents at spawning sides in areas where more sophisticated methods are not available. Understanding how abiotic factors influence the occurrence of multispecies spawning aggregations will lead to better conservation and management strategies in the Western Caribbean.
76

Factors affecting the timing and success of sockeye salmon spawning migrations

Crossin, Glenn Terrence 11 1900 (has links)
Migration timing is a conserved life-history trait. To address the hypothesis that reproductive hormones are principal determinants of migration timing, I physiologically biopsied over 1000 sockeye salmon and monitored their subsequent behaviour with acoustic and radio telemetry as they migrated from the Pacific Ocean toward and into the Fraser River, and then onward to distant spawning areas. Links between physiology, behaviour, and survival were examined. Circulating testosterone was found to be positively correlated with the rates of river entry in Late-run females but not in males, despite having concentrations that were equal if not higher than those of females. The notion of protandrous migration, in which males synchronize their activities to the reproductive and migratory schedules of females, was postulated as the basis for this difference. Once in river however, successful males and females were those that (1) took longest to enter the river, and (2) had high somatic energy, low testosterone, and low gill Na+,K+-ATPase activities. An experimental test of the effect of reproductive hormones on the regulation of migration timing proved inconclusive. Relative to controls, GnRH and (or) testosterone treatment did not influence rates of ocean travel by males. Unfortunately, no females were examined. Nevertheless, significant, positive correlations between initial testosterone and travel times were found irrespective of hormonal treatment, which was unexpected but consistent with the previous studies. In an experimental simulation of an ‘early’ migration, normally timed Late-run sockeye exposed to typical 10 ºC river temperatures and then released to complete migration were 68% successful. In contrast, salmon held at 18 °C and released were half as successful. The expression of a kidney parasite was near maximal in the 18 °C fish and undetectable in the 10 °C fish. Only gill Na+,K+-ATPase activity differed between groups, with a drop in the 18 °C fish. Though no clear stress, reproductive, or energetic differences were observed between groups, the ultimate effect of high temperature treatment was high disease expression, slowed migration speeds, and high migration mortality. Changes in reproductive schedules, due to changes in latitudinal ocean distributions, are discussed as potential causes of early migration by Late-run sockeye.
77

The biology of Samson Fish Seriola hippos with emphasis on the sportfishery in Western Australia.

andrew@recfishwest.org.au, Andrew Jay Rowland January 2009 (has links)
This thesis had two overriding aims. The first was to describe the biology of Samson Fish Seriola hippos and therefore extend the knowledge and understanding of the genus Seriola. The second was to uses these data to develop strategies to better manage the fishery and, if appropriate, develop catch-and-release protocols for the S. hippos sportfishery. Trends exhibited by marginal increment analysis in the opaque zones of sectioned S. hippos otoliths, together with an otolith of a recaptured calcein injected fish, demonstrated that these opaque zones represent annual features. Thus, as with some other members of the genus, the number of opaque zones in sectioned otoliths of S. hippos are appropriate for determining age and growth parameters of this species. Seriola hippos displayed similar growth trajectories to other members of the genus. Early growth in S. hippos is rapid with this species reaching minimum legal length for retention (MML) of 600mm TL within the second year of life. After the first 5 years of life growth rates of each sex differ, with females growing faster and reaching a larger size at age than males. Thus, by 10, 15 and 20 years of age, the predicted fork lengths (and weights) for females were 1088 (17 kg), 1221 (24 kg) and 1311 mm (30 kg), respectively, compared with 1035 (15 kg), 1124 (19 kg) and 1167 mm (21 kg), respectively for males. Despite these differences, female and male S. hippos attained similar maximum age, i.e. 29 (1470 mm FL) and 28 years (1280 mm FL), respectively. The maximum age determined for S. hippos is greater than that recorded for any other Seriola spp. The largest female and male S. hippos recorded during this study were encountered during the tagging component and had fork lengths of 1600 mm and 1380 mm, respectively. Seriola hippos has a protracted spawning period, ca four months, which starts in late spring and continues through summer into early autumn during which time many individuals engage in large spawning aggregations on the lower west coast of Australia. The length at which 50 % of the females in the population reached maturity was 831 mm FL (888 mm TL) and approximately 4 years of age, whilst all females over 950 mm FL were mature. Whilst aggregated for spawning S. hippos ceases feeding, however, during the non-spawning period this species can best be described as an opportunistic carnivore which feeds on a variety of pelagic and demersal prey. This study has greatly increased our understanding of S. hippos movement on the west and south coasts of Australia and has documented, for the first time, the migratory behaviour of a carangid in these waters. Many S. hippos individuals undertake long distance migrations to join spawning aggregation sites near Rottnest Island. Individuals tagged at these aggregation sites where recaptured throughout this species distribution along the south coast of Australia, some after travelling distances of over 2400 km. Many S. hippos individuals displayed strong temporal and spatial spawning ground fidelity as numerous fish released at the spawning aggregations were recaptured at the exact same spawning site at similar times in subsequent years. Tagging data suggest that on the completion of spawning S. hippos individuals return to a resident location and remain in that general vicinity over the winter months. This study has developed a hypothesis describing larval dispersal associated with the S. hippos spawning behaviour exhibited near Rottnest Island. It is proposed that variations in the prevailing ocean currents, at this important spawning location throughout the protracted spawning period, leads to high intra and inter-annual variation in larval distribution and survival. The affect of this variation on the evolution of the spawning and migratory behaviour displayed by S. hippos is discussed. A recent increase in the popularity of S. hippos as a catch-and-release sportfish has led to concerns by some anglers about post release survival of this species, particularly due to the depth of capture. Short term mortality of S. hippos capture at the sportfishing sites was assessed by monitoring fish held within an enclosure near the site of capture for up to 31 hours post release. The total hooking mortality of S. hippos subjected to catch-and-release angling within the Rottnest Island sportfishery is approximately 8%. Most of this observed mortality is delayed and occurs sometime after release. Although best handling practises require ongoing development, the current level of mortality associated with this catch-and-release fishery is considered acceptable. Furthermore, this mortality is likely to have little effect on the S. hippos population due to the high abundance of this species and the fact that even the highest fishing effort yields a relatively low catch. Seriola hippos exhibits a typical teleost neuroendocrine stress response associated with catch-and-release. The physiological dysfunction associated with the stress of capture in this species does not appear to cause any post release mortality. Instead, most mortality was attributable to barotrauma, however, although mortality in S. hippos increases with capture depth, this species is much less susceptible to depth induced mortality than other commonly targeted species in which barotrauma has been observed. This study developed key handling protocols for fishers who catch-and-release S. hippos at the Rottnest Island aggregation sites. These protocols cover aspects of catch-and-release fishing such as hook type, water depth, time at surface, release method and shark predation. Almost all S. hippos observed during capture from deep water released large quantities of gas from the opercular region, particularly during the last 10 to 20 m before reaching the surface. This phenomenon has also been witnessed by divers and fishers to occur under natural conditions. Investigations into this release of gas revealed this physoclistous species to exhibit unique swim bladder characteristics. Seriola hippos possess a membranous tube that connects the posterior-dorsal surface of the swim bladder internally to a region under each operculum externally. This connection, termed the swim bladder vent, allows the escape of expanding swim bladder gases on rapid ascent. The presence of the swim bladder vent provides an explanation as to why the incidence of external barotrauma symptoms in S. hippos captured from the deepwater was low. The ability to expel excess swim bladder gases during rapid ascent whilst retaining full swim bladder function is likely to offer this semi-pelagic species considerable advantages when hunting prey, avoiding predators and engaging in spawning activities. Preliminary estimates of total mortality indicated that S. hippos is not currently subjected to a high level of fishing pressure. However, managers must remain mindful of the fact that the size at which females reach sexual maturity, i.e. 888 mm TL, is greater than the current minimum legal length, i.e. 600 mm, and thus fishers are currently allowed to harvest sexually immature fish. Furthermore, the effectiveness of future conservation measures must consider the large scale migration and spawning strategy undertaken by this species in order to ensure its protection. The collaborative research approach undertaken during this study demonstrated that a high level of community engagement produced a large amount of research interest, increased stakeholder satisfaction from project input, improved understanding of research outcomes, and increased research uptake, all of which has led to increased stewardship and conservation of the S. hippos fishery and fisheries resources in general. Indeed, projects of this nature would not be possible without this type of approach.
78

Reproduction and recruitment of scleractinian corals on equatorial reefs in Mombasa, Kenya

Mangubhai, Sangeeta Unknown Date (has links)
This study examined patterns of coral reproduction and recruitment on lagoonal reefs adjacent to Mombasa in Kenya, at latitude 4ºS. Very little detailed research has been done on the reproductive patterns of scleractinian corals on equatorial reefs, where it has been suggested that seasonality and spawning synchrony may break down due to the weak environmental cues that are thought to govern the onset and timing of reproduction. Gametogenic data were collected for three faviid (Echinopora gemmacea, Platygyra daedalea and Leptoria phrygia) and three Acropora species (A. tenuis, A. valida and Acropora sp.1) in the Mombasa Marine National Park and Reserve between April 2003 – May 2005. A further 20 species of Acropora were identified (9 species represented range extensions) and marked to examine intra- and inter-specific spawning synchrony within this genus. In comparison to other regions, the overall pattern of coral reproduction in Kenya was found to be asynchronous, with spawning occurring over 9 months of the year from August – April, with some level of ‘temporal reproductive isolation’ occurring between species in relation to the main lunar month and lunar quarter when spawning occurred. Proximate cues governing the timing of reproduction could not be clearly discerned in Kenya with spawning occurring during both rising and maximum temperatures, during both neap and spring tides and across all lunar phases. Acropora species spawned over a 7-month period between October – April and faviid species over a 5-month period from December - April. The timing of reproduction in Acropora varied both within and among species, with the main release of gametes occurring from January – March when sea surface temperatures were at their summer maximum. Individual species released gametes over 2-5 months. The greatest overlap in spawning Acropora species occurred in February, which coincided with the spawning months of P. daedalea and E. gemmacea and suggests that some degree of multispecific spawning is a characteristic of Kenyan reefs. Within the main spawning period individual Acropora species had their main spawning in different lunar months. Acropora species released gametes in all lunar quarters, with the highest number of colonies and species spawning in the 3rd lunar quarter (i.e. in the 7 nights after full moon). Spawning in the faviids was more synchronised than Acropora species with the majority of faviid corals spawning in the 3rd lunar quarter. Single annual cycles of gametogenesis were recorded in E. gemmacea, A. tenuis, L.phrygia, most colonies of A. valida and Acropora sp.1, and in 84% of P. daedalea colonies. Biannual cycles of gametogenesis were recorded in 16% of P.daedalea colonies, which included two morphotypes identified in the Mombasa lagoon through morphometric and genetic studies. The presence of different oocyte sizes in L.phrygia during gametogenesis suggested that in some colonies there were two slightly overlapping oogenic cycles, which terminated in spawning within 1-2 months of each other. Overlapping oogenic cycles have not previously been recorded in hermaphroditic broadcast spawning corals in the tropics. The findings from Kenya support the hypothesis of protracted breeding seasons and a breakdown of spawning synchrony nearer the equator. It is hypothesised that the high fecundities recorded in faviid and Acropora species in Kenya compared to other regions, may allow reef corals to stagger their reproduction over 2-5 months, without incurring a significant reduction in fertilisation rates. Spat from the Family Pocilloporidae dominated settlement tiles in the Marine National Park and Reserve comprising 93.7% of spat, which contrasts with other tropical reefs where Acroporidae spat dominate. Patterns of settlement of Acroporidae spat generally coincided with the timing and extended spawning season in Acropora species in Kenya. The density and relative composition of coral recruits and juvenile corals on natural substrata recorded during this study were similar to those recorded before the 1997-98 bleaching event. There is no evidence to suggest that Kenya’s reefs have undergone a phase-shift in community structure, and reef recovery is occurring post-bleaching with mean percent hard coral cover currently at 25%. The slow rate of recovery of Kenya’s reefs is likely to reflect the scale of the mortality, source and availability of coral larvae as well as post-settlement processes operating at individual sites. In the medium-term, the recovery of Kenya’s reefs appears to be more strongly dependent on larvae from local reefs.
79

Reproduction and recruitment of scleractinian corals on equatorial reefs in Mombasa, Kenya

Mangubhai, Sangeeta Unknown Date (has links)
This study examined patterns of coral reproduction and recruitment on lagoonal reefs adjacent to Mombasa in Kenya, at latitude 4ºS. Very little detailed research has been done on the reproductive patterns of scleractinian corals on equatorial reefs, where it has been suggested that seasonality and spawning synchrony may break down due to the weak environmental cues that are thought to govern the onset and timing of reproduction. Gametogenic data were collected for three faviid (Echinopora gemmacea, Platygyra daedalea and Leptoria phrygia) and three Acropora species (A. tenuis, A. valida and Acropora sp.1) in the Mombasa Marine National Park and Reserve between April 2003 – May 2005. A further 20 species of Acropora were identified (9 species represented range extensions) and marked to examine intra- and inter-specific spawning synchrony within this genus. In comparison to other regions, the overall pattern of coral reproduction in Kenya was found to be asynchronous, with spawning occurring over 9 months of the year from August – April, with some level of ‘temporal reproductive isolation’ occurring between species in relation to the main lunar month and lunar quarter when spawning occurred. Proximate cues governing the timing of reproduction could not be clearly discerned in Kenya with spawning occurring during both rising and maximum temperatures, during both neap and spring tides and across all lunar phases. Acropora species spawned over a 7-month period between October – April and faviid species over a 5-month period from December - April. The timing of reproduction in Acropora varied both within and among species, with the main release of gametes occurring from January – March when sea surface temperatures were at their summer maximum. Individual species released gametes over 2-5 months. The greatest overlap in spawning Acropora species occurred in February, which coincided with the spawning months of P. daedalea and E. gemmacea and suggests that some degree of multispecific spawning is a characteristic of Kenyan reefs. Within the main spawning period individual Acropora species had their main spawning in different lunar months. Acropora species released gametes in all lunar quarters, with the highest number of colonies and species spawning in the 3rd lunar quarter (i.e. in the 7 nights after full moon). Spawning in the faviids was more synchronised than Acropora species with the majority of faviid corals spawning in the 3rd lunar quarter. Single annual cycles of gametogenesis were recorded in E. gemmacea, A. tenuis, L.phrygia, most colonies of A. valida and Acropora sp.1, and in 84% of P. daedalea colonies. Biannual cycles of gametogenesis were recorded in 16% of P.daedalea colonies, which included two morphotypes identified in the Mombasa lagoon through morphometric and genetic studies. The presence of different oocyte sizes in L.phrygia during gametogenesis suggested that in some colonies there were two slightly overlapping oogenic cycles, which terminated in spawning within 1-2 months of each other. Overlapping oogenic cycles have not previously been recorded in hermaphroditic broadcast spawning corals in the tropics. The findings from Kenya support the hypothesis of protracted breeding seasons and a breakdown of spawning synchrony nearer the equator. It is hypothesised that the high fecundities recorded in faviid and Acropora species in Kenya compared to other regions, may allow reef corals to stagger their reproduction over 2-5 months, without incurring a significant reduction in fertilisation rates. Spat from the Family Pocilloporidae dominated settlement tiles in the Marine National Park and Reserve comprising 93.7% of spat, which contrasts with other tropical reefs where Acroporidae spat dominate. Patterns of settlement of Acroporidae spat generally coincided with the timing and extended spawning season in Acropora species in Kenya. The density and relative composition of coral recruits and juvenile corals on natural substrata recorded during this study were similar to those recorded before the 1997-98 bleaching event. There is no evidence to suggest that Kenya’s reefs have undergone a phase-shift in community structure, and reef recovery is occurring post-bleaching with mean percent hard coral cover currently at 25%. The slow rate of recovery of Kenya’s reefs is likely to reflect the scale of the mortality, source and availability of coral larvae as well as post-settlement processes operating at individual sites. In the medium-term, the recovery of Kenya’s reefs appears to be more strongly dependent on larvae from local reefs.
80

Crescimento e dinâmica reprodutiva do camarão-ferrinho Rimapenaeus constrictus (Stimpson, 1874) (Penaeoidea) no litoral norte do estado de São Paulo síntese de cinco anos de estudo /

Lopes, Ana Elisa Bielert January 2017 (has links)
Orientador: Antonio Leão Castilho / Resumo: This is the first study to evaluate in broad spatiotemporal scales the growth parameters and population structure of Rimapenaeus constrictus, a barely damaged species composing the bycatch from shrimp fishing in the Western Atlantic. The abundance and size-class frequency distribution, growth, longevity and sex ratio were evaluated from monthly samples obtained in the northern littoral of São Paulo state from Jan/1998 to Jun/2003. We measured 5,812 individuals in which the sex ratio was skewed toward females; this was more evident in size classes greater than 10 mm in CL (carapace length) (binomial test, p<0.05). We selected 16 growth cohorts of females, and 8 of males, the majority consisting of younger individual cohorts excluded from the fisheries closure period. Growth estimates resulted in a CL∞ of 17.42 mm, a growth coefficient of 0.008 and a longevity of 579 days (1.60 year) for females, as well as a CL∞ of 16.3 mm, a growth coefficient of 0.01 and a longevity of 425 days (1.17 year) for males. Our results provide information of incontestable relevance to our knowledge of fishing management. We therefore strongly recommend that the fisheries closure period be changed to protect this species’ recruitment period and consequently its adult individuals. The reproduction and recruitment were analyzed in order to determine the size at the onset of sexual maturity, the reproductive and recruitment patterns and the copulation period. In our study, 6,456 shrimps were captured a... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre

Page generated in 0.8568 seconds